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The  current  energy  distribution  infrastructure  in  many  urban  areas  either  cannot  support  anticipated
future  energy  use  or  would  require  significant  rehabilitation  even  if current  use  were  maintained.  Under-
standing  the  dynamics  of  local  energy  use  is an  important  precondition  of  understanding  how  to  remedy
this  situation.  This  paper  builds  a model  to estimate  the  building  sector  energy  end-use  intensity  (kwh/m2

floor  area)  for  space  heating,  domestic  hot  water,  electricity  for  space  cooling  and  electricity  for non-space
cooling  applications  in New  York  City.  The  model  assumes  that  such  end use is  primarily  dependent  on
building  function,  whether  residential,  educational  or office  for example,  and  not  on  construction  type  or
IS the  age  of the  building.  The  modeled  intensities  are  calibrated  using  ZIP  code  level  electricity  and  fuel  use
data  reported  by the  New York  City  Mayor’s  Office  of  Long-Term  Planning  and  Sustainability.  The  end-use
ratios  were  derived  from  the  Residential  and Commercial  Building  Energy  Consumption  Survey’s  Public
Use  Microdata.  The  results  provide  the  ability  to estimate  the end-use  energy  consumption  of  each  tax  lot
in  New  York  City.  The  resulting  spatially  explicit  energy  consumption  can  be a  valuable  tool  for  determin-
ing  cost-effectiveness  and  policies  for  implementing  energy  efficiency  and  renewable  energy  programs.
. Introduction

Increasing energy prices, concerns about climate change and
ustainability have made the issues of building-sector energy effi-
iency, renewable energy and re-use of waste energy paramount.
n reaction many major cities have created plans for the future
hat attempt to reduce energy consumption and the associated
reenhouse gases. In particular, a few have called for the addition
f distributed generation (DG) technologies [1–3]. The incorpora-
ion of distributed energy generation into the current centralized
aradigm creates many hurdles for planners, policy makers, and
ngineers.

For New York City (NYC), a dense urban environment, over two
hirds of the energy consumption is from buildings [4]. Whether

 building uses energy for space cooling, space heating, domestic
ater heating or electricity driven applications is critical to under-

tanding future opportunities for energy reduction and sustainable
tilization. Early opportunities for reducing primary energy con-
umption through distributed generation will depend upon the

patial proximity of the different energy end uses.

For example, spatial proximity can allow cost-effective re-use
f waste heat streams from gas-fired distributed generation, also

∗ Corresponding author. Tel.: +1 212 854 7306.
E-mail address: bnh2111@columbia.edu (B. Howard).

378-7788/$ – see front matter © 2011 Published by Elsevier B.V.
oi:10.1016/j.enbuild.2011.10.061
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called cogeneration or combined heat and power (CHP). Spatially
distributed energy use information can permit one to identify cost-
effective engineering retrofit opportunities. A solar resource on one
building’s rooftop could be valuable for another building nearby.
A utility may  need to identify areas where local generation may
offset costs of increased transmission to accommodate additional
capacity from plug-in hybrid vehicles. Although these many objec-
tives can conflict with each other, some energy and infrastructure
planners are confident that these competing objectives can be met
with careful analysis [5]. A building-by-building energy consump-
tion model would be a starting point for such analyses by planners
and could be utilized by the private sector to offer energy efficiency
services.

The policies instituted to regulate the energy market have many
and varied implications on distributed generation. Meyers and Hu
in 2001 proposed many policies at the national and state level that
could help facilitate DG such as uniform interconnection standards
and national energy efficiency and emissions standards [6].  Many
have been adopted in some form by the regulatory entities but more
detailed policies are needed with the application of DG becoming
available to more people through technological innovation. In the
deregulated market, conflicts arise between the energy production

and energy distribution markets. Ropenus et al. detail the issues
that arise with various levels of vertical integration, regulation of
energy distributors and compensation of distributed energy gen-
erators [7].  With the potential future high penetration levels of

dx.doi.org/10.1016/j.enbuild.2011.10.061
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
mailto:bnh2111@columbia.edu
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istributed generation, energy distributors may  need to institute
ocational pricing signals to indicate where the least cost locations
re for interconnection to the distributor. Whether these areas of
vailable infrastructure coincide with areas where distributed gen-
ration is technically and economically feasible should be on the
genda for policy makers before such a scheme is accepted.

Engineers must be able to understand the various flows
f energy and match energy generation technologies with the
ppropriate demands to identify where and when infrastructure
pgrades are appropriate. For example, in a dense urban setting,
uch as that of New York City, the space for siting of distributed gen-
ration technologies or storage systems could become a hindrance
o the adoption of these technologies, whereas close proximity
ould reduce the costs through adoption at scale and the engineer-
ng costs of design and distribution. The energy model discussed
n the paper can serve as a foundation for analysis of distributed
eneration technologies for engineers, planners and policy makers.

Energy modeling is not a new concept and has been performed
y other researchers. Swan et al. [8] provided a review of energy
odeling techniques of the residential sector although many of

he methods can be extrapolated to the commercial sector as well.
he primary modeling techniques explored in the review were
op-down and bottom-up approach. From the definitions given by
wan, the model developed in this paper is a bottom up model. For
any models, the primary goal is to model a building or region but a

ew bottom-up models have been employed to model a city or large
ector. Yamaguchi [9] modeled 612 prototypical buildings incorpo-
ating stochastic occupant behavior, various zoning configurations,
VAC systems, and building construction characteristics. These
odels were aggregated into representative districts and extrapo-

ated to the city scale. The resulting model allowed for the analysis
f various energy efficiency and district energy reduction measures.
eiple and Sailor [10] created 30 prototypical buildings incorpo-

ating various aspects of the building construction and occupant
ehavior. The energy intensities were aggregated to the city level
roviding hourly information of electricity and natural gas usage
or Houston. Brownsword et al. [11] developed a model to predict
iurnal energy demand profiles for specific sectors of the city of
eicester in the United Kingdom dependent upon the type and size
f consumer and electricity data provided by various sources. The
ifference between the models previously mentioned and the one
eveloped in this paper is that there is zip code level validation of
he energy intensities. Many of the models developed prototypical
uildings with limited measured energy consumption information
ith respect to the city represented. A few validated values at the

ntire city scale but validation of over hundreds of parameters by
 few numbers is hardly desirable. In addition, the model devel-
ped in this paper provides some sense of error associated with
he energy intensities for various building types. Other models
owever provide hourly values of energy consumption, which are
ecessary for evaluating energy system alternatives and is a topic of

uture work. In addition they have incorporated into their models
he characteristics of various building types allowing for the anal-
sis of energy efficiency alternatives. The purpose of the current
odel is to discuss the impacts of various distributed generation

echnologies, which can be accomplished without detailed build-
ng characteristics. In this paper, the methodology for a spatially
xplicit model of annual building energy consumption by primary
nd use for the 859,134 tax lots of New York City is discussed.

. Methodology
Annual end-use energy consumption intensities were devel-
ped by performing a robust multiple linear regression to obtain
lectricity and total fuel intensities for 8 different building
ldings 45 (2012) 141–151

functions: residential 1–4 family, residential multi-family, office,
store, education, health, warehouse and other commercial. In addi-
tion to the eight building functions, intensities were determined
for specific building functions in different locations throughout
the city: residential 1–4 family buildings in Manhattan, and res-
idential multi-family buildings in the Bronx and office buildings
in Manhattan. Total fuel includes natural gas, steam, fuel oil #2,
fuel oil #4 and fuel oil #6. The electricity and total fuel intensities
were then apportioned into base electric, space heating, water
heating, and space cooling end uses by ratios derived from the
Residential Energy Consumption Survey (RECS) [12] and the
Commercial Building Energy Consumption Survey (CBECS) [13]
end use estimation. The base electric end use includes energy
consumed for appliances, lighting, ventilation, and refrigeration.
The annual end-use intensities were then applied to building floor
area across New York City to determine the spatial distribution of
energy consumption for the four primary end uses. The following
sections discuss how the data for the regression was gathered, the
regression methodology, and how the end-ratios were derived.

2.1. Data collection

The New York City Mayor’s Office of Long-Term Planning and
Sustainability provided the annual electricity and natural gas,
steam, or fuel oil consumption for 191 zip codes. They gathered the
data from the major utilities in New York City, Con Edison, National
Grid, and the Long Island Power Authority, and estimated the fuel
oil consumption using the methodology described in the Inventory
for Greenhouse Gas Emissions [4].  The energy consumption values
for fuel oil are estimated and not measured so they may deviate
from the true fuel oil consumption of New York City adding a source
of error to the analysis. The inventory is updated annually and data
from 2009 was  used. It is important to note that weather has a
large impact on energy consumption from year to year indicated
by the high correlation between the consumption of fuel oil, natu-
ral gas, and to some extent steam with heating degree days [4].  For
the year 2009, annual heating and cooling degree days were close
to the 30 year average suggesting that minimal bias is introduced
from choosing this particular year [14].

In addition to annual energy consumption, information about
the building stock was collected. The New York City Department
of City Planning maintains information on NYC building stock in a
geo-rectified database, PLUTO [15]. The database is updated annu-
ally and the 2009 version was used in the data collection process.
Among other characteristics described in the database, the total
building floor area for each tax lot is provided. There are approx-
imately 1 million buildings on 859,134 tax lots in New York City.
Since PLUTO’s finest resolution is by tax lot, the model is not able
to distinguish between individual buildings on the same tax lot.
The building floor area for each tax lot in PLUTO is placed into 8
different building categories: commercial, residential, office, retail,
garage, storage, factory, and other. In addition, each tax lot is given
one of 196 building class codes, each designated by a letter and a
number, to describe the main building use. Both the building class
designations and the building area categories were used to place
the building area into a particular building function. The building
area in each category was placed using the logic detailed in the
following paragraphs.

For the residential sector, if building area is classified as
a one-family dwelling, two-family dwelling, primarily one-
family dwellings with two  stores or offices, primarily one-family
dwellings with one store or office, primarily two-family dwellings

with one store or office, primarily three-family dwellings with
one store or office, primarily four-family dwellings with one store
or office, three-family walk up apartment or four-family walk
up apartment, the residential area is placed into residential 1–4
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Table  1
Total building floor area by building function from PLUTO 2009 (m2).

Total floor area (m2) % building floor area

Residential 1–4 family 133,850,279 27
Residential multi-family 187,896,563 38
Office 48,672,838 10
Store 22,519,566 5
Education 20,316,722 4
Health 9,752,847 2
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Warehouse 24,737,421 5
Other commercial 47,796,677 9

amily. If the residential area has not been already assigned, then
he residential area is classified as residential multi-family.

For the commercial sector, if the building area is classified as
n educational facility then the building function is classified as
ducation. If the building is classified as a hospital or health facility
hen the building function is classified as health.

Once the building area for education and health was allocated,
he remaining office building area is classified as office, the retail
rea is classified as store, the storage and garage area as Warehouse,
nd the factory and other areas are classified as other. The building
rea breakdown for the eight building types is shown in Table 1. The
esidential 1–4 family, residential multi-family and the office build-
ng functions comprise 75% of New York City building floor area. The
tore, education, health, and warehouse building functions account
or 16% of the building floor area while other commercial building
unctions represent the remaining 9%.

In this classification scheme, some building functions are bet-
er defined than others, i.e. consumption patterns, or intensities
cross buildings of different age or construction are not dramati-
ally different from each other as long as the function is similar. The
esidential building function however is a very significant portion
f the area in the city. For this functional category, it is advanta-
eous to take into account the differences between a 1–4 family and

 multi-family residence. A multi-family residence in New York is
ikely to be an older rental building with multiple tenants or a newer
all condominium building with common areas of more windows.
n either case the energy consumption intensity is different than
hat of a 1–4 family home, which is likely to be owner occupied.
herefore residential buildings were classified as either residen-
ial 1–4 family or residential multi-family. The education function,
owever, includes elementary, junior, senior high schools, theolog-

cal seminaries, colleges and universities. Each of these functions
an have different occupancy behaviors and schedules leading to a
igher variance in the modeled consumption if grouped in a single
uilding category. In such cases the model would show a poor fit
nd could be a source of error.

.2. Robust multiple linear regression

There are many methods for predicting energy consumption in
uildings. Tso and Yau performed a study comparing three methods
f predicting electricity consumption: regression analysis, deci-
ion tree, and neural networks [16]. They found that decision tree
nd neural networks performed better in different seasons but the
ifference in error between the three methods were minimal, indi-
ating that, as a predictive tool, linear regression is a valid method.

The method of multiple linear regression has been used by
esearchers previously to predict energy consumption using many
ifferent predictors. The predictors used range from building
onstruction, occupancy patterns, population, and economic

ndicators [17,18]. Also the CBECS report [19] indicates that the
rincipal building function, building size, and location have a large

mpact on energy use. They also found that the energy intensity by
ear constructed was not statistically different between different
ldings 45 (2012) 141–151 143

building age categories. For the current analysis to develop end-use
intensities for each building function, the total floor area of each
building type was used as a predictor for electricity and total fuel
consumption.

By using the building floor area as predictors, the coefficients
produced by a linear regression would result in the commonly
used metric of building energy use intensities or energy usage
index. In the analysis this commonly used performance metric is
assumed to be constant with varying building size. Using build-
ing floor area and building function as predictors of annual energy
consumption may  not capture all of the variation; but it does
accommodate many other aspects such as occupancy patterns,
building equipment, and building size. Huang et al. performed
a sensitivity analysis and observed a decreasing trend of energy
consumption intensity in buildings from approximately 9290 to
92,900 m2 with larger decreases for smaller buildings. The change
in energy intensity across the entire range was about 27% [20]. This
analysis was only performed for an office building and may  not
reflect the trend of energy consumption intensities for other build-
ing functions, such as a residential or education. In contrast, the U.S.
Energy Information Administration reported the findings from the
CBECS and found that the energy intensity for commercial build-
ings did not vary significant over the 93–46,500 m2 range, with the
930–2300 m2 range having the lowest intensity [19]. For the anal-
ysis presented here, energy consumption intensities are assumed
to be constant allowing for the application of linear regression.

The theory of ordinary multiple linear regression is based in
many assumptions. A principle assumption is that the data are
normally distributed. Given the large proportion of 1–4 family
homes, the distribution of building area is slightly skewed towards
the lower values. There are many ways to adjust the model to
compensate for this error but many of the methods result in non-
additive models and result in coefficients that are not interpretable
using the common energy intensity metrics. To develop an additive
model, robust estimators were used. There are many types of robust
estimators but three were considered for the regression: least abso-
lute deviation, trimmed least squares, and M-estimators. Each of
these methods minimizes different functions to obtain a regression
model. For the least absolute deviation, the sum of the absolute
values of the residuals is minimized. The least trimmed squares
minimizes the sum of the square of the residuals but removes val-
ues considered outliers and only takes into account a subset of the
data. Since searching the entire space for the subset that best mini-
mizes the sum of the square of the residuals is impossible, a random
selection of subsets is incorporated leading to an approximate solu-
tion. The M-estimator minimizes a function of the residuals, e, and
weights values based on the median absolute residuals, 1/2e2 for
|e| > k(MAR) and k(MAR) × |e| − 1/2k(MAR)2 for |e| > k(MAR). Each of
the three estimators was used to fit the data using preliminary pre-
dictors. It was  found that the M-estimator yielded the best results
by calculating positive coefficients, smaller residual values, and
more rejections of the null hypothesis for each of the estimated
coefficients. For the final analysis, a robust linear regression using
the Huber M-estimation was  employed. This method fits the linear
model

yi = ˇ1xi1 + ˇ2xi2 + · · · + ˇnxin + ε (1)

by minimizing the objective function
n∑
i=1

�(ei) =
n∑

i=1

�(yi − ȳi) (2)
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here

(e) =

⎧⎨
⎩

1
2

e2 for |e| ≤ k

k|e| − 1
2

for |e| > k
(3)

nd

 = 1.994 × MAR (4)

For the energy analysis, yi is the electricity or total fuel consump-
ion for a given ZIP code, xik is the total floor area of each building
unction k in ZIP code i, ˇi are the electricity or total fuel intensities
t by the regression, ε is the random error, ȳi is the fitted value of the
lectricity or total fuel consumption, and MAR  is the median abso-
ute residual. In addition to the M-estimation, the Huber sandwich
echnique was employed to obtain a more robust estimation of the
tandard error. For each regression, ZIP codes with incomplete data
ere removed resulting in the use of 170 observations.

While performing the statistical analysis using building func-
ion, and then mapping the results across the city, the errors
etween the model and the zip-code data revealed some system-
tic patterns with borough affiliations. While boroughs represent
istinct geographic and administrative parts of the same city,
he historic growth of the city around Manhattan as the prime
ffice and residential space makes it unique. Manhattan with its
igh-rise buildings (with foot traffic entering/leaving from the
round floor) and high share of financial, fashion and media sectors
ay  have a lower intensity of heating compared to a street-level

ffice space that caters to multiple walk-in clients. Similarly it
s possible that high-rise multi-family residential space in Man-
attan with a greater density of apartment units could have a

arger electrical intensity and a lower heating intensity. There
re many intricacies of Manhattan that make the borough differ-
nt than other parts of the city, therefore an additional predictor
or Manhattan was incorporated to obtain a better fit to the
ata.

The predictors used in the electricity regression were residen-
ial 1–4 family, residential multi-family in Manhattan (Residential

ulti-Family MN)  residential multi-family in the remainder of the
ity (Residential Multi-Family NYC-MN), office, store, education,
ealth, warehouse, and other commercial. The predictors used

n the total fuel regression were residential 1–4 family, residen-
ial multi-family in Manhattan and the Bronx (Residential Multi
amily MN/BX), residential multi-family in the Brooklyn, Queens,
nd Staten Island (Residential Multi-Family BK/QN/SI), office in
anhattan (Office MN), office in the remainder of the city (Office
YC-MN), store, education, health, warehouse, and other commer-
ial. Note that the abbreviations for the borough specific building
ypes will be used throughout the paper however for the end use
llocation the residential 1–4 family, residential multi-family and
ffice building functions will be considered without borough spe-
ific designations.

.3. End use allocation

Four end uses were considered in the analysis: base electric,
pace cooling, space heating, and water heating. In this paper these
our end uses are called primary end uses. Base electric includes
ses such as appliances, lighting, and refrigeration. Energy for cook-

ng is not included in the primary end uses. The city provided data
as not by end use but by energy carriers: electricity, natural gas,
eating oil, and steam. For the analysis the energy provided by nat-

ral gas, steam, and fuel oil were considered one source called total
uel. What is however very useful for engineering analysis is further
eparating the total fuel consumption into that consumed for space
eating as opposed to water heating since the former is seasonal
Fig. 1. Measured vs. predicted annual energy consumption for both electricity and
total  fuel, 2009.

and the later is less likely to vary with seasons. Similarly it is useful
to separate electric consumption into that for space cooling loads
and that for all other purposes, with the former being seasonal use.
In the model, it is assumed that energy consumed for both space
heating and water heating was provided entirely from total fuels
and not from electricity since a breakdown by ZIP code of electric
space heating is not available. The ratio of energy consumed for
space cooling to that for base electric applications and the fractions
of total fuel used for space heating, hot water, and cooking were
determined using the public use micro-data from both the RECS
and CBECS [12,13]. The surveys obtain, among other information,
national averages of annual end-use energy intensities for various
building types.

Since the end use breakdowns vary significantly across the
United States, buildings from the RECS and CBECS were only
selected from the Middle Atlantic region, which includes New York

State, Pennsylvania, and New Jersey. In the survey weights are given
to each data point to reflect how many buildings nationally are sim-
ilar to it. Since only the Middle Atlantic region was  considered, the
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eights were not used. The fractions of the base electric and space
ooling end uses sum to 1. The space heating and water heating end
ses however do not sum to 1, since cooking is not included in the
nalysis but in some building types is a significant portion of total
uel usage.

The breakdown of total fuels into primary end-uses such as
pace heating and hot water would depend upon specific build-
ng function. For example an office space is unlikely to use much
omestic hot water where a residential space would use a signif-

cant amount. Hence the determination of the primary end-use
atios was carried out for each of the eight building function cate-
ories. It is important to note that the store category is very diverse
n its end-use energy profile. Restaurants in particular are unique
n that, with respect to retail stores, they consume a significant
mount of energy for cooking and refrigeration purposes. There are
ver 18,000 food service and drinking establishments in New York
ity but in comparison to the approximately 1,000,000 buildings

n New York City this single category is not statistically significant.
his but will cause some error when breaking down end uses since
estaurants comprise approximately 30% of retail, food-service and
rinking establishments in New York City [21].

Both the RECS and CBECS defined many more building cate-
ories than the eight functions defined previously, therefore each
f the building categories was placed into one of the eight desig-
ated building functions. For example, the office category in the
BECS, since it directly corresponds with the office building func-
ion, was placed in office. However the religious building category
s described in the CBECS as buildings in which people gather for
eligious activities such as chapels, churches, mosques, synagogues,
nd temples, so it is best placed in other. The other building function
as not broken down into the primary end uses because the mix

f buildings included in this function can have significantly differ-
nt patterns of energy consumption and are very distinct for New
ork City. The building categories from the RECS and CBECS that
ere placed in this building function were essentially not used in

he end-use breakdown. As with the area classification system, the
rouping of buildings with different occupancy schedules and con-
umption patterns could lead to large deviations from the average
nd-use consumption values.

The RECS and CBECS also designate more end uses than the four
rimary end uses of interest. As with the building functions, end
ses designated in the RECS or CBECS were placed into primary
nd uses with the exception of the miscellaneous end use. This
nd use was not considered as a portion of either the electricity or
he total fuel for any building type since the energy consumption
as minimal for many buildings and the mixture of energy sources

upplying this end use is unclear.
For each building type, with the exception of building categories

escribing stores, the proportion of electrical or fuel energy allo-
ated to one of the four end uses was apportioned by

i,j = ei,j∑4
k=1ei,k × ık,j

(5)

here ei,j is the average energy intensity for building function i for
nd use j, fi,j is fraction of electricity or total fuel apportioned to end
se j and building function i, and ık,j equals 1 if the end use k uses the
ame fuel as end use j. For the store building function, the energy
onsumption by end use varies significantly between the build-
ng categories within the function, such as restaurants and grocery
tores, and some categories were surveyed more than others. To

btain an average that does not just reflect the sampling method,
he averages for each end use were taken for each building cate-
ory included in the store building function. Then the average of
ach building category was used for the average energy intensities,
ldings 45 (2012) 141–151 145

ei,j and ei,j. The proportion of electricity or total fuel allocated to
each end use for each building function is depicted in Table 2.

3. Results and discussion

The following sections will discuss the outcomes of the regres-
sion analysis, the application of the end-use intensities, and the
spatial distribution of the annual energy consumption by end use.

3.1. Robust multivariate linear regression

The estimated coefficients, standard error, and p-values for both
the electricity and total fuel robust multivariate linear regression
are shown in Tables 3 and 4, respectively. For both the electricity
and total fuel regression, all predictors rejected the null hypothesis
for an alpha value of 0.05 indicating that the estimated intensities
are statistically significant. In the following paragraphs, the pre-
dicted values from the model will be compared to the data provided
by the city, which will be termed measured values.

Some building types have larger standard error than others,
meaning that the true energy intensities for a particular building
categorized as one of these building functions may deviate more
from the estimated intensities then other building types with lower
standard error. Each of the residential building functions for elec-
tricity and total fuel as well as the Office NYC-MN building function
for total fuel have low standard errors which could be explained by
the fact that the occupancy patterns, types of appliances and build-
ing configuration are not that dissimilar from building to building.
In addition, these building types represent 74% of the New York
City building stock providing a larger sample to estimate the energy
intensities. For the store, education, health, warehouse, and Office
MN building function, the standard error is larger for both electric-
ity and total fuel, which may  be indicative of the many different
types of buildings included within a single building function or the
small amount of ZIP codes with building area in those functions.

The measured and predicted annual energy consumption for
both electricity and total fuel is shown in Fig. 1. Also two lines with
slopes of 1.2 and 0.8 are shown on the plot and any points between
them indicate agreement of the predicted and measured energy
consumption within ±20%. The percent difference between the fit-
ted and measured consumption was  calculated and shown on a
map  in Fig. 2 to provide a geographical display difference between
the fitted and measured values. For electricity consumption, 86%
of the fitted ZIP codes were modeled within ±20% of the measured
consumption. ZIP codes with larger discrepancies were located pri-
marily in Manhattan and Queens, with a few ZIP codes located in
Brooklyn and the Bronx. For total fuel consumption, 77% of the fitted
ZIP codes were modeled within ±20% of the measured consump-
tion. ZIP codes with larger discrepancies were mainly located in the
financial district and upper west side of Manhattan, industrial areas
of Queens, and Staten Island.

The results from the robust linear regression indicate that the fit
to the city is sufficiently good, within ±20%, although the difference
between the modeled values and the measured values is smaller for
electricity than for the total fuel. This difference can be attributed to
the fact the measured data for the electricity consumption is more
accurate than that for total fuel. Electricity generation and distri-
bution is well regulated and there are precise methods in place
to monitor its allocation. In addition, electricity is only distributed
when there is a demand. Fuel oil and even some natural gas are
purchased in anticipation of demand and for back up power sys-

tems. In the data collection process this energy is considered to be
consumed when in actuality it may  not all be used within the year.

The predictive capabilities of the model seem to deviate from
the measured consumption in various places within the city. Most
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Table 2
Fraction of annual energy consumed by end use and building function.

Building function Base electric Space cooling Total electricity Water heating Space heating Total fuel (including cooking)

Residential 1–4 family 0.85 0.15 1 0.23 0.74 1
Residential multi-family 0.82 0.18 1 0.23 0.71 1
Office 0.86 0.14 1 0.05 0.93 1
Store  0.93 0.07 1 0.16 0.61 1
Education 0.90 0.10 1 0.10 0.89 1
Health  0.84 0.16 1 0.29 0.68 1
Warehouse 0.94 0.06 1 0.09 0.91 1

Table 3
Estimated annual electricity intensities, annual electricity intensity standard error, and p-value by building type.

Building function Estimated electricity intensity (kWh/m2) Std. error (kWh/m2) p-Value

Residential 1–4 family 49.2 4.30 <2.2 × 10−16

Office 276 4.66 <2.2 × 10−16

Store 180 54.0 8.6 × 10−4

Education 142 26.0 4.6 × 10−8

Health 229 47.9 1.8 × 10−6

Warehouse 119 30.3 8.6 × 10−5
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Other commercial 32 

Residential Multi-Family MN 88.9 

Residential Multi-Family NYC-MN 54.7 

f the variation can be explained by the energy consumption of
he ZIP code being dominated by one use. Many ZIP codes with
arge deviations from the measured consumption include places
uch as a race track, Coney Island attractions, Grand Central Sta-
ion, a large group of apartments owned by one owner, a large
sh market, airport, Roosevelt Island, Riker’s Island prison, and a
ospital committed to energy efficiency. If each of these specific
uildings or group of buildings has energy practices significantly
ifferent from other buildings in the same classification, the model
ill not be accurate. In general, perhaps there are additional pre-
ictors other than building floor area such as average household

ncome or cultural deviations that account for these disparities.
ore information is needed to determine the reasoning behind
hese spatially local deviations. The estimates do however provide
n upper level understanding of how building energy is distributed
hrough out the city.

Fig. 2. Percent difference between modeled and m
16.2 0.049
12.0 1.2 × 10−6

4.98 <2.2 × 10−16

Figs. 3 and 4 show the estimated coefficients from the robust
multivariate linear regression and their respective standard errors.
These intensities were compared to the aggregated building cat-
egory data from CBECS and RECS. The other commercial building
type does not include a comparison since the mix  of other com-
mercial buildings in New York City is very specific and cannot be
generalized to the Middle Atlantic region. Depicted in the figures
in addition to the estimated intensities and their standard errors
are the range of intensities for electricity and total fuel for each
building type excluding the upper and lower 10% from CBECS or
RECS. The borough specific energy intensities are compared to the
RECS and CBECS ranges based on their general building function:
for electricity residential multi-family and for total fuel residential

multi-family and office.

In comparison to the RECS and CBECS values, the electricity and
total fuel energy intensities fall within the ranges reported with

easured annual energy consumption, 2009.
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Fig. 3. Annual building electricity consumption intensity estimates by building
function (kWh/m2), 2009.
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ig. 4. Annual building total fuel consumption intensity estimates by building func-
ion (kWh/m2), 2009.

he exception of the office building function for electricity and the
ffice NYC-MN building function for total fuel. In addition, the
pper range of the standard deviation for the education building
unction falls outside of the range reported by CBECS.

In Figs. 3 and 4, one can clearly see the relationships between
he borough specific intensities. For electricity, the energy intensity
or residential multi-family in Manhattan is about 35 kWh/m2
arger than that of a residential multi-family building in the rest of
ew York City (Residential Multi-Family NYC-MN). For total fuel,

he energy intensity for residential multi-family in Manhattan and

able 4
stimated annual total fuel intensities, annual total fuel intensity standard error,
nd p-value by building type.

Building function Estimated total fuel
intensity (kWh/m2)

Std. error
(kWh/m2)

p-Value

Residential 1–4 family 145 11.5 <2.2 × 10−16

Store 547 135 5.2 × 10−5

Education 447 71.6 4.1 × 10−10

Health 392 66.9 4.9 × 10−9

Warehouse 179 66.8 7.5 × 10−3

Other commercial 111 45.7 0.015
Residential Multi-Family

MN/BX
223 30.8 5.3 × 10−8

Residential Multi-Family
BK/QN/SI

302 16.2 <2.2 × 10−16

Office MN  80.6 25.1 1.4 × 10−3

Office NYC-MN 286 70.1 4.9 × 10−6
Fig. 5. Annual building energy consumption intensities by end use and building
function (kWh/m2), 2009.

the Bronx (Residential Multi-Family MN/BX) is about 80 kWh/m2

less than a residential multi-family in the rest of New York City
(Residential Multi-Family BK/QN/SI). Also for total fuel, the energy
intensity of office in Manhattan (Office MN) is approximately
200 kWh/m2 less than that of office in the rest of New York City
(Office NYC-MN). There are many factors that could contribute to
the difference between the borough specific estimated intensities
and the differences between the estimated values and those
reported by the RECS and CBECS such as different energy dissipa-
tion rates of office equipment to different infiltration rates due to
building construction or foot traffic but a full analysis is outside
the scope of this paper.

3.2. Annual end-use intensities

The primary end-use ratios discussed in Section 2.3 were applied
to the electricity and total fuel intensities for each building function
resulting in the primary end-use intensities displayed in Fig. 5. The
standard error was  less than 2.5% for each end use and building
function. In Fig. 5, there are three different residential multi-
family building functions: residential multi-family in Manhattan
(Residential Multi MN), residential multi-family in the Bronx (Res-
idential Multi BX) and residential multi-family in the remaining
boroughs (Residential Multi BK/QN/SI). This resulted from the com-
binations of the electricity intensities for Manhattan and the fuel
intensities for Manhattan and the Bronx. Similarly for office, there
are two  different office building functions designated in Fig. 5:
office buildings in Manhattan (Office MN)  and office buildings in
the remainder of the city (Office NYC-MN).

The health, store, and education building functions have the
highest intensity when one adds all the four end uses, annu-
ally requiring approximately 600 kWh/m2 each. The corresponding
intensity for the residential 1–4 family function is nearly one-third
of that for health, store and education. When it comes to specific
primary end uses, the consumption intensities are also quite differ-
ent depending upon building function. For example, an office space
uses 4.5 kWh/m2 for water heating whereas a residential space
can use nearly ten times that. Energy for space cooling is minimal
for all building functions ranging from 7 to 37 kWh/m2 annually.
Space heating, however, is the dominant end use for each build-
ing function with the exception of office buildings in Manhattan
whose dominant end use is base electric. The space heating energy

2
consumption intensities range from 75 to 335 kWh/m , with the
education, health, and store building functions at the higher end
of the range. Although with respect to overall energy consump-
tion, the residential building functions consume smaller amounts
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Fig. 6. Annual building energy con

f energy for space heating. As a proportion of total energy con-
umption, space heating for residential building functions ranges
rom 55% to 65% of the total energy consumption. For base electric
pplications, office buildings in all of NYC consume the most energy,
40 kWh/m2, which makes base electric the dominant primary end
se for that building function.

.3. Spatial distribution of building energy consumption

Applying the energy intensities to all of the building area in New
ork City produced the spatial distribution of building energy con-
umption in New York City. The total annual energy consumption
or each block normalized by block land area is shown in Fig. 6. As
ne would expect a consumption normalized by block area would
how particularly high values for parts of the city where the build-
ngs are tightly packed and tall. Hence a block located in midtown

anhattan, has one of the largest annual energy consumption when
ormalized by block area consuming as much as 8000 kWh/m2. To
rovide a sense of scale in terms of power, the power consumption
f the block averaged over all hours in the year is about 17.6 MW.
Large tracts with such high block area normalized energy con-
umption are located primarily in the central business and financial
istricts that consist primarily of tall buildings. The areas of Man-
attan with lowest energy consumption are in the neighborhoods
ion by block area (kWh/m2), 2009.

of Harlem, East Greenwich Village, and West Greenwich Village.
There are a few areas of large energy consumption outside of Man-
hattan such as downtown Brooklyn, western Bronx, Astoria, and a
few concentrated areas along major transportation routes. Other
than these areas the total energy consumption diminishes rapidly
with distance from Manhattan. The lowest areas of total energy
consumption per block area, less than 120 kWh/m2, are located in
the eastern portions of Queens and Staten Island, which are com-
prised of primarily 1–4 family residential structures.

The annual base electric, space cooling, water heating, and space
heating energy consumption for Manhattan only are shown in Fig. 7
to show the main differences in the magnitude of consumption and
spatial variation within the primary end-use consumption. Across
Manhattan, the space heating consumption is larger than any other
end use, reflective of the individual end-use breakdown since most
building types consume more energy for space heating than any
other end use. The largest concentration of space heating energy
consumption is located in the central business district and along
the upper east and west sides. This pattern is different for the
base electric and space cooling energy demand where the largest

concentration of energy consumption is located primarily in the
central business district only. This difference is explained by the
large amount of energy consumed for space heating in residential
buildings and stores as opposed to office buildings. The effect of



B. Howard et al. / Energy and Buildings 45 (2012) 141–151 149

F om lef

t
i
w
i
l
p
w

d
f
t
s
b
s
a
a
v
s
h

ig. 7. Annual space cooling (top left), water heating (top right), base electric (bott

he distribution of residential and office buildings can be observed
n the distribution of the water heating consumption pattern as

ell. The areas consuming large amounts of energy for water heat-
ng are located in the upper east and west sides with significantly
ower consumption in the central business district. As mentioned
reviously residential buildings consume 10 times more energy for
ater heating than an office building.

For distributed generation, a focus of future work, the break-
own of the energy consumption estimates by end use allows
or more detailed spatial analysis of the impacts of distributed
echnologies. Consider a block located between 123rd and 122nd
treet and 3rd and 2nd avenue in Manhattan. For this mixed-use
lock with 72% of residential space and 22% of office and store
pace, the corresponding power for base electric would be 1.2 MW
nd that for domestic hot water would be 0.5 MW.  The base electric

nd water heating end uses would not have significant seasonal
ariations. This block, that is not served by the Con Edison district
team system, could possibly be a good location for a combined
eat and power system as the waste heat of a decentralized natural
t) and space heating (bottom right) energy consumption by block area (kWh/m2).

gas powered reciprocating engine satisfying only a quarter of the
electricity load could easily satisfy the energy needs for water
heating since such a system could potentially produce 0.6 MW of
waste heat. The spatial proximity of these loads is also important
in determining the feasibility of combined heat and power systems
and by providing the energy model in conjunction with the spatial
location such an analysis can be performed. The water heating
to base electric ratio for each block of New York City is depicted
in Fig. 8. The ratios change block by block throughout the city
showing that the feasibility of different energy generating systems
will vary depending on location. Also shown in Fig. 8 is the water
heating to base electric ratio in ascending order for each block in
New York City. The large percentage of the blocks in New York
City having a heat to electric ratio of 0.78, that of residential 1–4
family buildings, is shown in Fig. 8 by the purple colored blocks

and the constant section of the plot in the lower right corner. These
areas are indicative of the many blocks in Brooklyn, the Bronx,
and Queens consisting of only residential 1–4 family structures.
Aside from these blocks if one considers all of the buildings on a
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Fig. 8. Annual hot water to base ele

lock as opposed to singular tax lots, one can obtain almost any
hermal to electric ratio between the highest and lowest ratios for
ny individual building function. Extrapolating further, potentially
ne could choose the buildings to aggregate to obtain the desired
atio for whatever the technical system under consideration. This
aises important regulatory issues, however, related to whether
his violates Con Edison’s territorial franchise rights, etc. [22].

In addition to the analysis of combined heat and power systems,
he ratio of thermal to electric demand is also important in deter-

ining the feasibility of systems of utilizing solar energy. When
onsidering a combined solar thermal and photovoltaic system, the
imiting factor is the amount of roof space/faç ade space. In order to
onvert the maximum amount of useful energy, the proper per-

entage of area should be covered with either a photovoltaic or
olar thermal system. By knowing the thermal to electric ratio, one
an determine the best combination of these technologies for the
argest impact in terms of economics and emissions.
nergy consumption ratio by block.

Although the model provides a suitable starting point for upper
level analysis, the current limitations are that the energy consump-
tion values are annual. Hourly energy profiles would allow for more
accurate assessments of distributed generation and of how much
energy could actually be used by a demand center. In particular
photovoltaic and solar thermal heating systems rely on the inter-
mittent energy of the sun. To be able to quantify the impacts of these
technologies completely, hourly as well as spatial knowledge of the
energy demand is needed. Measuring hourly energy consumption
by end use for each building in New York City for even a few typical
days will be quite an amazing feat but one that is very far into the
future and would require restructuring of energy provider privacy
policies. Models will need to be developed in the interim and for

this reason hourly energy consumption profiles by building func-
tion and end use are topics for future analysis. In addition more
spatially explicit energy consumption data would allow for more
accurate estimates at smaller spatial resolutions.
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[21] U.S. Census Bureau, 2007 Economic Census, 2007 Economic Census of Island
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. Conclusion

The annual building energy consumption values determined in
his analysis have many implications. Many energy policies strive
o make electricity less carbon intensive, which is very practical
or an office building that supplies most of its energy needs with
lectricity. For a residential building however, most of the energy
s consumed for space heating and domestic hot water purposes.
hese end uses are typically supplied by fossil fuels. Domestic
ot water, for example, is very substantial in residential build-

ngs accounting for approximately a fourth of all fossil fuel energy
sed in these buildings and residential buildings comprise 65% of
YC’s building stock. Converting domestic hot water heaters from
arbon intensive fuels to renewable solar energy could have enor-
ous impacts in meeting citywide carbon reduction goals and since
ater heating systems are already equipped with thermal storage

he intermittency of energy provided by the sun may  not be a large
ssue. In addition to the end use of individual building types, the
patial arrangement of these loads can have a large impact on the
easibility of micro combined heat and power systems. Combined
eat and power systems are most economical when the system can
e run at constant load and if all of the excess waste heat can be
sed. Since office buildings are large consumers of electricity for
ase electric applications, a non-seasonal end use, if this building
as located next to residential buildings the waste heat could be

ully utilized by nearby neighbors reducing energy losses. The spa-
ial energy consumption model by end use developed in this paper
ill allow different distributed generation options and energy

eduction measures to emerge from urban patterns of demand. This
ill assist urban planners and policy makers in identifying the most
romising directions for future urban energy infrastructures and
or cities to meet their local energy efficiency and greenhouse gas

itigation targets.
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