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a b s t r a c t

We develop a spatial electricity planning model to guide grid expansion in countries with low pre-

existing electricity coverage. The model can be used to rapidly estimate connection costs and compare

different regions and communities. Inputs that are modeled include electricity demand, costs, and

geographic characteristics. The spatial nature of the model permits accurate representation of the

existing electricity network and population distribution, which form the basis for future expansion

decisions. The methodology and model assumptions are illustrated using country-specific data from

Kenya. Results show that under most geographic conditions, extension of the national grid is less costly

than off-grid options. Based on realistic penetration rates for Kenya, we estimate an average connection

cost of $1900 per household, with lower-cost connection opportunities around major cities and in

denser rural regions. In areas with an adequate pre-existing medium-voltage backbone, we estimate

that over 30% of households could be connected for less than $1000 per connection through infilling.

The penetration rate, an exogenous factor chosen by electricity planners, is found to have a large effect

on household connection costs, often outweighing socio-economic and spatial factors such as inter-

household distance, per-household demand, and proximity to the national grid.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The International Energy Agency estimates that 1.6 billion
people worldwide have no access to electricity. In Sub-Saharan
Africa (SSA), fewer than 10% of rural households have electricity
connections, and many rural social institutions, including schools
and health clinics, also lack access.1 Governments of countries in
SSA are now emphasizing the critical role that electricity services
play in human development, and this emphasis has coincided
with a greater awareness of the suitability of off-grid options for
remote, rural populations. Given the increasing population
densities of many rural areas, planners need tools to make rapid
assessments of the cost-effectiveness of grid expansion and other
technology options without having to undertake multi-year rural
electrification studies. A model that combines basic information
on electricity demand and costs with geographic variability in
population density and other factors can demonstrate how
different settlement patterns affect the costs of each technology
option and help planners prioritize areas for grid expansion.
ll rights reserved.

+1 212 854 0603.
Energy planners often spend substantial time and resources to
obtain reasonably accurate estimates of electrification costs in
particular administrative units or regions. This includes assessing
whether grid or off-grid options are more suitable and establish-
ing levels of financial support for national, district, or local
contributions. Engineering studies that estimate costs by produ-
cing a ‘‘bill of materials’’ needed for an electrification project
typically require detailed assessments that incorporate the
physical location of each structure to be electrified. Depending
on the scope of the project, this might include a large number of
households, institutions, and other infrastructure. The expense of
acquiring this level of detail can be prohibitively high, precluding
rapid, yet informed, planning and policy decisions.

In this paper, we combine insights from engineering and
planning to develop a methodology for electricity planning that
incorporates detailed spatial information, allowing for rapid
comparison of technologies while providing reasonably accurate
cost estimates. The methodology preserves spatial granularity to
the smallest spatial unit at which data are generally available. In
the case of Kenya, this was a ‘‘sublocation,’’ which typically
represents 5000 to 10,000 people in an area smaller than 15 km2.

The methodology can guide national policy decisions by
helping planners compare different regions, select appropriate
areas for grid expansion and application of other technologies,
estimate costs, and set reasonable electrification targets and

www.sciencedirect.com/science/journal/jepo
www.elsevier.com/locate/enpol
dx.doi.org/10.1016/j.enpol.2009.01.021
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timelines. The methodology can also help to determine the
appropriate public sector contribution to electrification as
countries shift from state-dominated power systems to private
ownership and market-driven investment (World Bank, 2002;
Rufin et al., 2003; Victor and Heller, eds., 2006; Modi et al., 2006).

We apply the methodology to the case of Kenya, a country of
36 million, the bulk in the western portion of the country that
includes the dense and sprawling city of Nairobi and high-density
rural regions in the Western and Nyanza provinces (Fig. 1). More
than half the population resides in 3% of Kenya’s land area and
lives at densities of more than 500 people/km2, and over 90% of
the population lives at densities higher than 125 people/km2. We
find, given the high density of many rural regions and the current
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Fig. 1. Kenya’s population distribution. (a) Population density, computed as the

ratio of sublocation population to sublocation area. The sublocation is the smallest

administrative unit in Kenya. (b) Percent of total population that resides in

sublocations with specified population density ranges. The percent of the total

area of the country at each specified population density range is also shown.
electricity demand and cost structure in Kenya, national grid
expansion tends to be more cost-effective than off-grid options.

1.1. Electricity planning in SSA

In SSA, most urban centers have electricity access, but rural
coverage is uneven and inadequate. In such cases, there are
several alternative frameworks to guide planning. These include
integrated rural development (electricity is treated as a compo-
nent of infrastructure development), area coverage (quickly reach
as many customers in a particular area as possible), grid extension
(prioritize households close to the grid), isolated generation
(evaluate local generation sources in remote regions), and
intensification (focus on adding connections in electrified areas)
(Munasinghe, 1988). Regardless of which approach is chosen, a
first step is to understand where people live and how best to reach
them given existing infrastructure; this suggests distribution
planning as the natural starting point for a national analysis.

Geographic information systems (GIS), a powerful tool for
analyzing information on where and how people live, can be used
to improve peoples’ access to services and markets. For this
reason, GIS systems are being employed in development planning
in SSA in a range of sectors, including electricity planning efforts.
A recent Ugandan study, for example, mapped energy demand
centers and developed a ranking system to prioritize locations
based on the number of households and institutions (Kaijuka,
2007). This study used maps to visualize the distribution of
households and institutions, but did not incorporate spatial
information into a planning model. Therefore, we distinguish
our approach from planning efforts that use GIS solely as an
organizational or visualization tool.

Efforts to further develop grid electricity infrastructure in SSA
face a range of financial, technical and institutional challenges
including lack of access to capital, poor coordination across
sectors and institutions, and high levels of poverty resulting in
low ability to pay for services (Haanyika, 2006). Moreover,
electrification by itself has not always lived up to the touted
development benefits (World Bank Independent Evaluation
Group, 2008). Addressing these issues is mostly beyond the scope
of this paper. Instead, we ask: What is the most cost-effective way
to reach the target population regardless of projected impacts on
development. We do make some accommodation for ability to pay
by adjusting electricity demand levels based on poverty data and
utility company estimates, but this is done exogenously and does
not factor into the definition of cost-effective.

1.2. Background on Kenya’s power sector

In 1997, Kenya’s vertically integrated electricity industry was
split into the Kenya Electricity Generation Company (KenGen) and
Kenya Power and Lighting Company (KPLC), with the Energy
Regulatory Commission responsible for industry supervision. Both
companies are now publicly traded on the Nairobi stock exchange,
but the government remains the majority shareholder. KPLC,
which owns and operates the national transmission and distribu-
tion system, purchases electricity from KenGen and Independent
Power Producers (IPPs). KenGen generates about 80% of the
electricity consumed in Kenya, approximately 62% of which comes
from hydropower, 26% from fossil sources, and 12% from
geothermal plants in the Rift Valley (Kenya Electricity Generation
Company (KenGen), 2008). Most hydro stations are located along
the Tana River and its tributaries, with thermal plants (diesel and
natural gas) in Nairobi and Mombasa. In 2007, KPLC’s effective
system capacity of 1045 MW had attained a peak of 976 MW
(KPLC, 2007a).



ARTICLE IN PRESS

Existing KPLC Grid
220 kV
132 kV
66 kV
33 kV
11 kV

Case Studies
Protected Areas

Major Power Plants
Diesel
Geothermal
Hydro
Natural Gas

a

b

c d

Fig. 2. Kenya’s national electricity grid as of October 2007. (a) High voltage transmission network. (b) Outlines of areas of detail shown in subfigures c and d. (c) Detailed

view of an area for grid extension in the western part of the Rift Valley. (d) Detailed view of an area for infilling around Nairobi.
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KPLC’s high-voltage transmission network connects the major
urban centers of Nairobi, Mombasa, Nakuru, Eldoret and Kisumu
(Fig. 2). These cities, along with the agriculturally productive rural
areas around Mount Kenya, have better medium-voltage (MV)
coverage than other parts of the country.2 In these areas, the
penetration rate (defined as the percentage of households with a
2 KPLC maintains a digitized and georeferenced version of its high- and

medium-voltage distribution network (220, 132, 66, 33 and 11 kV lines), last

updated in October 2007. The data were received directly from KPLC as AutoCAD

files and then converted to shapefiles. In addition to existing grid lines, the dataset

included 33 and 11 kV grid lines under construction. These lines were digitized by

the Ministry of Energy as part of the 1996/97 Rural Electrification Master Plan.

Most have now been built and thus were considered part of the existing

distribution network. Original KPLC data were cleaned and simplified to create a

continuous medium-voltage network passing through demand nodes representing

sublocations that currently have access to electricity.
grid connection) can reach 30%. In other rural areas – home to
three-quarters of Kenya’s population – existing lines are insuffi-
cient and penetration rates remain below 10% and sometimes
much lower. Much of the north and east of the country is arid, and
there are no grid lines.

Approximately 12% of Kenya’s 8 million households were
connected to the KPLC national grid as of October 2007, with some
additional households connected to KPLC’s mini-grids in Lamu
and Garissa and other locally managed mini-grids. Another 2–4%
of households have access to an alternative source of electricity.3

Most of these households have a battery-based system (BBS), and
some BBS systems are connected to solar PV cells. Although Kenya
3 World Bank (2006) estimated a 14.5% national electrification rate for Kenya

when households with access to any kind of electricity services were included.
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has one of the most developed PV markets in East Africa,
knowledge on effective use and long-term maintenance is not
widely understood leading to frustrations with PV systems
including variation in power availability and short battery life.

Between June 2006 and October 2007, KPLC added nearly
170,000 new customers, reaching a total of 971,038 connections
(Muhammad, 2007). Considering that there were just 67,000 new
connections between 2005 and 2006, and fewer than 50,000 in
each previous year (KPLC, 2007b), this represented unprecedented
growth and was achieved largely through a rapid connection
program managed by foreign executives brought in at the
government’s behest. As part of the coverage expansion, KPLC
connected a backlog of tens of thousands of households on
waiting lists, indicating strong demand for electricity despite the
high connection prices charged by KPLC.

Ambitious targets laid out in Sessional Paper No. 4 (as cited in
World Bank, 2006) call for a 20% household electrification rate by
2010 and a 40% rate by 2020. Kenya’s population is growing by
approximately 2.3% per year, adding close to 200,000 households
each year. To meet the targets, Kenya will need to connect well
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over this number of customers on an annual basis. Achieving the
Millennium Development Goals (MDGs) will also require a focus
on connecting all schools, health institutions and other social
infrastructure, with deployment of decentralized technologies in
more remote and sparsely populated areas.

Several recent documents have addressed Kenya’s plans for
increasing electricity coverage. These include the Least Cost
Development Plan of KPLC (2007a), Project Prospectus of the
Ministry of Energy (2007) and a World Bank (2006) study on rural
electrification in Kenya. The last of these studies provides
institutional context for coverage expansion as well as a discus-
sion of financing and policy options.

Our work is distinguished from previous efforts in its spatial
approach to electricity planning, and its effort to bridge the gap
between engineering and planning. Traditionally, engineers have
been concerned with technical requirements and costs of rural
power whereas planners have focused on the need for geographic
coverage, equity, and rural development. Our model combines
analytical techniques from both disciplines to create a mutual
understanding across their different perspectives.
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8 The coincidence factor indicates the percentage of total demand that occurs

during peak hours. It accounts for the fact that different user peaks associated with

different activities and equipment occur at different times. Note that in the case of

L. Parshall et al. / Energy Policy 37 (2009) 2395–2410 2399
2. Spatial electricity planning and costing model

Our model determines the least-cost technology – either grid
electrification or an off-grid alternative – to connect each
population center, which we refer to as a demand node. To rapidly
provide reasonable cost estimates, the model reduces the compu-
tational complexity from millions of households to several
thousand demand nodes, generally allowing the smallest political
administrative unit in a country to be used (e.g. village, department
or sublocation depending on the country’s political organization).
This allows for the incorporation of detailed demographic and
socio-economic data often available at a much higher spatial
resolution than the province or district, while still permitting rapid
planning by aggregating households. In the model, we represent
each of Kenya’s 6612 sublocations as a discrete demand node.4 The
average sublocation is less than 15 km2, though some sparsely
populated sublocations are many times larger and dense subloca-
tions tend to be less than 10 km2 (Fig. 3).

The model is not meant to replace detailed engineering
analyses of grid roll out, including load-flow analysis, which
would be needed as part of the implementation process, so it
cannot be used as a stand-alone implementation tool.5 Instead the
model can be used to guide electrification planning within
Ministries, Rural Electrification Agencies and donor organizations.

2.1. Comparison of technology costs

Our model first estimates the cost of achieving a target level of
penetration in each demand node. We compare the cost of grid
electrification to two possible decentralized, off-grid technolo-
gies: (1) diesel mini-grids with low-voltage (LV) distribution lines
and secondary medium-voltage lines if needed; and (2) stand-
alone solar photovoltaic (PV) systems for households combined
with a diesel generator in the market center to meet productive
demand.6 In both the grid electrification and diesel mini-grid
scenarios, MV line is defined as power distribution line at a
voltage of 33 or 11 kV and LV line is defined as distribution line at
a voltage lower than 500 V. Although micro-hydro and wind
power are other viable options in some parts of Kenya, solar PV
and diesel were chosen because their costs are reasonably well
understood, and because they could be implemented in any part
of the country.7

We develop a demand model to estimate the additional
domestic, productive and institutional consumption within each
node based on the number of households and institutions to
electrify, and their unit demands, and include a coincidence factor
4 Kenya has 6612 sublocations represented by 6783 polygons. The original

georeferenced file obtained from the Columbia Earth Institute contained a greater

number of polygons, but was cleaned to remove duplicate data. Some sublocations

are represented by multiple polygons; in this case, the total population of the

sublocations was apportioned to the polygons based on relative area. Only

sublocations with population greater than 0 were used in the model. These

sublocations are represented by 6737 polygons.
5 We chose a cost minimization approach rather than a benefit maximization

approach because tabulation of costs is more straightforward and objective

compared with assessing location-specific benefits in SSA. Results of the model

could be incorporated into a full cost-benefit analysis.
6 In the solar PV plus diesel option, individual solar PV systems are used to

electrify individual households and institutions while a diesel generator is used to

meet productive demand. Linking solar PV systems through LV distribution lines is

not considered attractive because the benefits from scale economies are

insignificant compared to the cost of the wire.
7 According to the International Small-Hydro Atlas, there are six micro-hydro

(o10 MW) plants in Kenya, with a total capacity of 13.64 MW, and half of Kenya’s

potential hydropower capacity of 6000 MW is located on small rivers where

additional micro-hydro plants could be developed (IEA, 2009). Therefore, although

they are not considered in this paper, decentralized micro-hydro plants could play

an important role in the expansion of Kenya’s electricity sector.
to account for different user peaks associated with different
activities occurring at different times.8 We then estimate the net
present value of the 10-year discounted capital and maintenance
costs for each technology option based on the unit costs of
appropriately sized equipment.9
infilling, we assume that productive and institutional demands are already met, so

we include only the cost of connecting additional households. In unconnected

nodes, we include an estimate of the cost of meeting productive demand and

connecting social institutions including schools and health centers.
9 Technologies are compared based on total aggregate demand for a demand

node (sublocation). We compare technologies over a 10-year time horizon

regardless of when each sublocation is connected. This means that if an area is

connected only in year 9 of the 10-year horizon, the underlying technology choice

is still based on 10 years of system operation rather than a single year of system

operation. Projected peak demand incorporates 10 years of population growth, but

not economic growth. In all cases, the cost of the technology includes

transportation and installation of equipment. In the case of grid extension, capital

costs cover MV line and transformers, poles, LV line to connect households and

institutions, and indoor household equipment such as wire and lamps; costs do

not include generation and high-voltage transmission, reinforcement of the

existing distribution network, or institutional capacity building. The diesel mini-

grid cost structure is similar to national grid extension but includes the cost of an

appropriately sized diesel generator for the community. Solar PV plus diesel capital

costs include solar panels and batteries for domestic demand and a diesel

generator for productive demand. Note that since the decentralized options are

stand-alone systems of distribution, costs associated with generating electricity

using solar PV and/or a diesel generator are included. In the case of grid extension,

generation costs are included indirectly through the cost of MV electricity

purchases.
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This technology comparison step permits the identification of
demand nodes where national grid extension is the most cost-
effective technology option. Costs of grid extension are broken up
into two major elements (Fig. 4). The first component is the cost of
extending an MV line from an existing distribution network to an
MV-to-LV transformer. We refer to this component as extension of
the MV backbone. The second component is the cost of connecting
households and institutions within the demand node, including
the cost of secondary MV line internal to the node, MV-to-LV
transformers, LV line and internal household wiring. This compo-
nent covers costs internal to the node, which for brevity we refer to
as the ‘‘internal cost.’’ Estimation of the internal cost takes into
account the spatial area of the demand node and average inter-
household distance, both of which affect the amount of secondary
MV line, as well as LV line and transformers, required to connect
households within the node.10 The internal cost also includes a
tariff representing cost recovery of generation and transmission
expenses.11 Splitting the costs into these two components makes
sense from a practical standpoint since many countries are
considering the franchisee model, with concessions limited to
one or more demand nodes building out from the backbone.

In nodes that have an existing MV backbone, increasing the
penetration rate through additional grid connections is generally
more cost-effective than the decentralized options.12 New connec-
tions in these nodes are referred to as infilling, and our estimate of
internal cost includes an evaluation of whether additional second-
ary MV line is needed to support the new connections. Utilities,
through practice, have already recognized areas with an MV
backbone as economically viable for grid expansion, and sometimes
refer to this mode of extension as ‘‘intensification’’ in contrast with
‘‘extensification’’ in cases where new MV backbone is needed.

In nodes with no existing MV backbone, we first compare the
costs of the two decentralized options and identify the lower cost
off-grid technology. Note that in principle this comparison can be
carried out for decentralized options other than those considered
here. We then compare the cost of the identified decentralized
technology with the internal cost of grid electrification. If the
decentralized option is the lower cost choice even before
considering the cost of extending the MV backbone, then clearly
this location is not viable for grid extension. However, if the
internal cost is lower than the decentralized option, then the
difference in cost provides a decision metric, MVmax, defined as
the maximum length of MV backbone that would be cost-effective
to build such that the overall cost of grid extension is equal to the
lower cost decentralized option. The metric is node specific and
provides a simple estimate of how far the existing MV backbone
can be extended to reach this node.
2.2. Grid extension algorithm and grid compatibility

The computed MVmax metric, along with the location of
demand nodes relative to one another and the existing grid, can
10 An adjustment factor is applied to account for the fact that electricity grid

lines normally follow roads, and another countervailing factor accounts for

clustering of population within the geographic area represented by the demand

node.
11 The model does not account for reinforcement of the existing network or

institutional costs associated with supporting a large number of additional

connections.
12 The digitized, georeferenced version of KPLC’s grid that we had access to did

not allow us to precisely determine the number of existing connections, if any, in

each demand node (sublocation). Therefore, we assumed that any sublocation with

existing MV line has at least some household connections. As utilities obtain

increasingly detailed georeferenced data, this assumption could be modified. Using

the model, we verified that in demand nodes with existing MV lines, additional

grid electrification is cheaper than off-grid alternatives.
then be used to identify all the grid compatible nodes. If extension
of the national grid is the cheapest way to electrify a demand
node, it is defined as grid compatible.13

The grid extension algorithm is based on Kruskal’s minimum
spanning tree (Nesetril et al., 2001 translation of Boruvka, 1926).
Boruvka’s work was motivated by a contemporary problem in
Czechoslovakia: economic construction of power networks to
connect cities. The basic problem is: Join n points in a given space
such that any two points are either joined directly or by means of
some other points and the total length of the network is the
shortest possible (Nesetril et al., 2001).

We relax the constraint that all points must be connected to
allow for the existence of alternative technologies that do not
require networking. Instead, we connect only the points (demand
nodes) for which networking is the most cost-effective option. The
algorithm searches over the whole space and selects connections
by moving from the shortest possible connection to the longest
possible connection. Small demand nodes that might be passed
over in an algorithm that adds connections by moving sequen-
tially outward from the existing grid can become grouped into
larger demand hubs that become part of the extended grid (Fig. 5).
This may increase the total number of nodes classified as grid
compatible.14

Two relations drive our algorithm:
(1)
13

reinfo

needs

conne

node
14

nodes

netw

below
For each non-connected demand node, n, connect if

distancen;gpMVmaxn and the connection does not created loop

where distancen,g is the distance between node n and the
closest point on the grid, g, where the closest point might be
part of the existing grid or a node previously connected by
the algorithm.
(2)
 For each newly connected group of nodes

MVmaxk ¼ MVmaxi þMVmaxi � distancei;j

where distancei,j is the distance between nodes i and j.
MVmaxk is the adjusted MVmax value for a demand group
containing nodes i and j.
The algorithm is an example of combinatorial optimization
where the objective is to find the least-cost electricity network
given existing grid lines and a set of unconnected demand nodes.
A recent paper applied similar techniques to the design of
autonomous village-level power systems, ultimately using a
combination of a minimum spanning tree and simulated anneal-
ing process to find a solution (Lambert and Hittle, 2000).
Compared with our algorithm, the Lambert and Hittle approach
is more detailed and computationally expensive, so it is better
suited to analysis of small, sub-national areas.
3. Modeling electricity demand and costs in Kenya

Demand nodes and electrification costs were modeled for
Kenya using demographic and poverty data along with unit
At present, we do not model lines of varying voltages, feeder lines, or

rcement of the existing grid, nor do we consider generation or transmission

to support the scale-up in distribution. The amount of line needed to

ct the node is proxied by the straight-line distance between the demand

and the closest connection point on the grid.

Given this search pattern, the algorithm will generate mini-grids, i.e. sets of

that are connected to one another but that are not connected to the main

ork. Therefore, the program includes an option to clean out all mini-grids

a threshold number of connections defined by the user.
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Table 1
Classification of sublocations into four demand categories.

Demand category Population

density

(people/

km2)

Poverty

rate (%)

Household

demanda

(kWh/hh/

year)

Productive

demandb

(kWh/hh/

year)

Sparse, poor o256 454 360 50

Sparse, non-poor o256 o54 600 100

Dense, poor 4256 454 360 75

Dense, non-poor 4256 o54 1800 340

a Household demand covers all energy consumed inside the home to power

light bulbs, radios, TVs, etc.
b Productive demand covers all energy consumption associated with produc-

tive infrastructure and market centers. This may include water pumps, agro-

processing equipment, mills and small businesses. To obtain the total productive

demand in a sublocation, the numbers in this table should be multiplied by the

total number of households in the sublocation. 100% of households in all electrified

sublocations are assumed to have access to electricity for productive use, but this

does not include any major or specific industrial demand.
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Fig. 5. Algorithmic grouping of demand nodes. (a) Schematic illustrating a

sequential algorithm where nodes are not grouped. (b) Schematic illustrating the

algorithm in this study, where nodes can be grouped.
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demand and cost data obtained from a variety of sources. Since
the sublocation was selected as the geographic unit for demand
nodes, all data were obtained at or disaggregated to this spatial
resolution.
16 Most data for the Northeast province were missing, but there was little

missing data in the other provinces.
17 Assumed annual electricity consumption for health and educational

institutions: clinic – 360 kWh/year, dispensary – 600 kWh/year, health center –

2400 kWh/year, primary school (day) – 1200 kWh/year, secondary school –

2400 kWh/year, boarding school – 15,000 kWh/year. Hospitals were not included

because they were assumed to already have adequate access to electricity. The

distribution of health centers across sublocations was based on Ministry of Health

standards for the number of institutions needed to serve a population of a given
3.1. Demand categories

In Kenya, household energy demand varies with income and
population density, with higher-income and more densely-
populated sublocations tending to have higher demand. Therefore,
sublocations were classified into four demand categories, each with
different household and productive demand levels (Table 1). These
categories replace the more traditional distinctions between urban,
peri-urban and rural electrification and were developed through
consultations with KPLC. Since much of Kenya’s population is not
nucleated into settlements, and since sublocation boundaries are
not aligned with urban/rural boundaries, the demand classification
was considered the most accurate method for estimating house-
hold demand in different parts of Kenya.

The classification was developed from population and poverty
data. Population data collected by Kenya’s Central Bureau of
Statistics as part of a 1999 Census were projected forward to the
base year of 2007 assuming an annual population growth rate of
2.3%.15 Sublocations with a population density below the median
15 Population data were obtained from the Columbia Earth Institute, though

the original source was Kenya’s Central Bureau of Statistics (CBS). The population

growth rate of 2.3% was obtained from the World Bank’s World Development

Indicators database. No distinction was made between urban and rural population

growth. The base year used for projection was 1998, the year for which residency

was established by the CBS.
of 256 people/km2 were classified as low density and other
sublocations as high density.

Poverty data were obtained from the Center for International
Earth Science Information Network (CIESIN) at Columbia Uni-
versity at a spatial resolution of locations, which is one geographic
level above sublocations. The Foster, Greer, and Thorbecke head-
count index, which gives the proportion of each location’s total
population counted as poor, was selected as a poverty indicator.
All sublocations in each location were assumed to have the same
headcount index. Kenya’s sublocations were classified into non-
poor (o54% of the sublocation’s population living below the
poverty line, the median value) and poor. Sublocations with
missing data were classified as poor.16

About 25% of sublocations were assigned to each of the four
demand categories, but a greater share of the population is
concentrated in dense sublocations (Fig. 6).

3.2. Modeling total demand and technology requirements within

each node

Total peak demand for each node was estimated by summing
up all household, productive and institutional demands
and setting the coincidence factor equal to 75%. Household
and productive demand estimates were based on the
demand category. Institutional demand was estimated from data
supplied by Kenya’s Ministry of Education and Ministry of Health
on the distribution of schools and health centers and their average
energy consumption. Annual demand for each institution was
assumed to range from 360 kWh/year for a small clinic to
15,000 kWh/year for a boarding school.17
size. The distribution of schools was based on the Ministry of Education’s data on

the number of schools in each division. The Ministry of Education has undertaken

a school-mapping project to identify the geographic location of each school and

collect data on access to basic services, including electricity access, but these data

were not available in time for incorporation into the present work. Kenya has

approximately 16,000 primary schools and 6000 secondary, boarding and

specialized schools. Most primary schools and around half of the secondary

schools do not have electricity. Around 20,000 health institutions – mostly smaller
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Sparse, Poor

Sparse, Non-poor

Dense, Poor

Dense, Non-poor

Fig. 6. Distribution of demand categories obtained from density and poverty

indices developed for Kenya.
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Whenever possible, the spatial location of the demand node
was mapped to a known township, market center, or trading
center within the sublocation; otherwise the centroid of the
sublocation was used to represent the location of the demand
node within Kenya.18

To estimate the technology requirements for grid electrifica-
tion, we first assumed that 50% of the demand node’s spatial area
would need to be within range of an MV-to-LV transformer.19 This
reflects the tendency of population to cluster into settlements,
rather than to spread out evenly across a sublocation, though
clustering of households is fairly weak in Kenya.

We assumed that each MV-to-LV distribution transformer
could cover a radius of 300 m. Since distribution grids frequently
follow roads, this assumed range is smaller than the typical range
of a MV-to-LV transformer. Transformer range allows one to then
(footnote continued)

clinics and dispensaries – are needed to ensure adequate health coverage in Kenya.

Based on World Bank (2006), most dispensaries and around 30% of existing health

centers do not have access to electricity. In our model, all health and educational

institutions in a sublocation with existing MV lines were assumed to have access to

electricity, and other institutions were assumed to lack electricity.
18 In some cases, data on the locations of population centers available from the

Solar and Wind Energy Resource Assessment (SWERA) database could be used to

identify the locations of townships, market centers and/or trading centers. In cases

where multiple townships, market centers and/or trading centers could be

identified within the same sublocation, the largest center was selected to

represent the demand node, with largest defined according to a hierarchy with

city 4 municipality 4 township 4 market center 4 trading center 4 lodge. In

cases where there were multiple centers with the same classification, the one

closest to the sublocation’s centroid was selected. In cases where the SWERA data

could not be used to identify a demand node, the centroid of the sublocation was

used.
19 Note that the 50% figure is an assumption that would otherwise have to be

computed based on population settlement patterns in the country.
estimate the number of transformers and corresponding length of
secondary MV line needed in the demand node.

An estimate of the length of LV line needed to connect each
household (or other point of demand such as a school or clinic) to
the closest MV-to-LV transformer requires the specific geographi-
cal layout of households within a demand node. If households are
tightly clustered, then the LV line length would be smaller as
compared with a situation where households are spaced uni-
formly apart. To characterize the nature of household spatial
distribution, an ‘‘inter-household distance’’ is defined that
represents the length of LV line needed for each household. In
this paper, we have assumed that inter-household distance is
equal to the average distance between households in a demand
node, assuming that households are equally spaced over 20% of
the sublocation’s total area. In a companion paper we have
discussed the issue of estimating inter-household distance
(Zvoleff et al., 2009).

3.3. Modeling unit costs for each technology

Detailed cost estimates for each component of each technology
were developed during consultations with KPLC and others
between January and November 2007. We compared the capital
and recurrent costs of three technologies: (1) national grid
extension, (2) diesel mini-grids, and (3) individual solar PVs
combined with a diesel generator. Unit costs were derived from
listed market prices for MV line, LV line, transformers, diesel
generators, solar panels and batteries. Market prices for grid
extension and diesel mini-grids were obtained from KPLC. Local
experts were consulted to refine solar PV costing. Cost estimates
for individual components of each technology are summarized in
Table 2. Costs do not include the extensive institutional capacity
building that would be associated with a rapid scale-up in
electricity coverage. Also, note that costs are constantly changing,
and many of the unit costs have gone up since the data were
gathered for this paper.
4. Model evaluation using a 100-node test region

We first evaluated the model’s ability to guide policy decisions
by testing it on a 10 km�10 km test region with 100 demand
nodes. A total population of 25,000 were allocated unevenly
across the nodes to capture natural demographic variation in
population density. For simplicity, the following assumptions
were made: productive and institutional demands were assumed
to be 0 and population growth was assumed to be 0. We also
assumed that there was no existing national grid. We used the test
region to investigate the impact of a range of geographic and
policy factors on the model’s estimation of household connection
costs and MV backbone length. Descriptions of test scenarios, and
the results for each scenario, are summarized in Table 3.

In the base scenario, the target penetration rate was assumed
to be 100% resulting in an average connection cost of $1784 and
9.5 m of new MV backbone per household, both of which are
reasonable results given unit cost assumptions and population
distribution. Since the penetration rate is a key exogenous policy
variable, we next tested the impact of lower penetration rates on
average connection costs. Decreasing the target penetration rate
has two main effects. The primary effect is an increase in the
average household connection cost since infrastructure costs –
and particularly MV line – are spread over fewer households.
A secondary effect is that the number of demand nodes for which
grid electrification is more cost-effective than a decentralized
option is reduced, resulting in a smaller national grid (Fig. 7).
In the test region, 83 of the nodes were grid compatible when the
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Table 2
Capital and recurrent costs for each technology (USD).

National grid extension: demand node connection costsa

Peak demand at node o4 kW o12 kW o20 kW o40 kW o80 kW Per kW

Capital (USD) MV line (per km)b 14,098 14,098 14,098 14,098 14,098

MV/LV 3j transformer 1507 1507 1507 2627 2638 39

Installation (per transformer) 746 746 746 2612 2612

Recurrent (USD/year) (all levels of peak demand) Transformer maintenance 3% of initial capital cost

Transformer lifetime 10 years

MV line maintenance 2% of initial capital cost

National grid extension: household connection costs

Peak demand per household o 50 W o75 W o175 W o400 W o 1 kW Per kW

Capital (USD) LV line (per km)c 10,611 10,611 10,611 10,611 10,611

New connection 149 149 149 149 149

Household equipmentd 82 94 154 232 367 367

Recurrent (USD/year) (all levels of peak demand) Billing and O&M Billing (per hh per year) 25

O&M–LV lines and equipment 3% of capital cost

Electricity Electricity purchase 0.04 per kWh (wholesale)

Distribution losses 18%

Diesel mini-grid

Diesel generator

costs

Capital (USD) Generator 1000 per kV A with a power and scaling factor of 0.64

Installation 25% of generator cost

Civil engineering 1667

Fuel tank 1741

Recurrent (USD/

year)

Generator

maintenance

5% of generator cost and lifetime of 5 years

Fuel 1.05/l consumed at 0.4 l/kWh

Mini-grid network

costs

All capital and recurrent costs are the same as for national grid extension with the exception of technical losses, which are assumed to be 2% reflecting the smaller network size, shorter

distribution lines, and lighter load.

Solar PV+Diesel generatore

Solar PV–peak demand (per hh)f o50 W o75 W o175 W o400 W o1 kW Per kW

Capital (USD) Panel and fixing 300 450 900 2400 6000 6000

Batteries 150 225 450 1200 3000 3000

Regulator, lamps, accessories 150 225 450 1200 3000 3000

Recurrent (USD/year) O&M 5% of capital cost; lifetimes—panel (20 years), battery (3 years), balance (10 years)

Diesel engine All capital and recurrent costs are the same as for a diesel generator, but the generator is sized based only on productive demand.

a Cost assumptions for national grid extension and diesel mini-grids were finalized following meetings with KPLC in Nairobi in October/November 2007.
b Three-phase conductors of 75 mm2 are assumed for MV line extension and a cost of 14,908 USD/km was derived from an average of the unit costs for 33 and 11 kV conductors since the model does not explicitly distinguish

between 33 and 11 kV line. The cost also includes overhead of 35% to cover transport and other administrative costs, as suggested by KPLC.
c An average of the costs for single-phase conductors and three-phase conductors of 50 and 100 mm2.
d Includes labor cost (45 USD for loads up to 50 W), wires (22 USD), and lamps/light bulbs (15 USD).
e Solar PV systems are used to electrify individual households and a diesel generator is used to meet productive demand. Note that solar PV output is limited by daily solar radiation and Kenya has an estimated 2000 h of

sunlight per year, on average. Linking solar PV systems through LV distribution lines is not considered attractive because the benefits from scale economies are insignificant compared to the cost of the wire.
f Sizing of systems takes into account the efficiency of panels as well as the losses in batteries and converters.
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Table 3
Comparison of population coverage, average connection cost, and network length in 100-node test region.

Scenario description Number of nodes and

population covered

Average household

connection cost

MV

network

length

Base: population of 25,000 randomly distributed across 100 demand nodes, each of

which represents a discrete spatial area. The total area is 100 km2, so the average

population density is 250 people/km2. Households are assumed to have 4 people

and electricity demand of 500 kWh/year. The target penetration rate is 100%. There

is no existing electricity grid.

83 nodes (99% of pop) $1,784/hh 59 km

(9.5 m/hh)

In the scenarios below, all assumptions are the same as for the base, except as noted percentages shown compare each scenario to the base

(1) Varying household demand: per-household demand at each node is randomly

assigned to 250, 500, 1000 or 2000 kWh/year.

86 nodes (pop �1%) +6% +4%

(+5%)

(2) Equal population at each node: population of 25,000 evenly distributed across 100

demand nodes, each of which represents a discrete spatial area.

95 nodes (pop �4%) +22% +12%

(+16%)

(3) 75% target penetration rate: target penetration rate is 75%. 80 nodes (pop �25%) +35% �4%

(+28%)

(4) 50% target penetration rate: target penetration rate is 50%. 75 nodes (pop �50%) +108% �11%

(+80%)

5) 25% target penetration rate: target penetration rate is 25%. 54 nodes (pop �75%) +314% �30%

(+199%)

(6) Nucleated population: population is assumed to be concentrated into 50% of the area

represented by each demand node, lowering the inter-household distance.

89 nodes (pop �1%) �20% +3%

(+3%)

(7) Low capital cost for solar PV: the capital cost of solar PV is reduced by 50%. 50 nodes (pop �6%) �14% �31%

(�26%)

(8) Existing grid in center: there is an existing electricity grid connecting two demand

nodes in the middle of the area. One of the connected demand nodes represents the

largest demand center.

83 nodes (no change) No change +1%

(+1%)

(9) Existing grid in corner: there is an existing electricity grid connecting two demand

nodes in the corner of the area. The connected demand nodes represent relatively

small populations.

83 nodes (no change) No change No change

(10) Sequential algorithm, existing grid in center: there is an existing electricity grid

connecting two demand nodes in the middle of the area. One of the connected

demand nodes represents the largest demand center. New connections are selected

using a sequential algorithm.

98 nodes (no change) +4% +14%

(+13%)

(11) Sequential algorithm, existing grid in corner: there is an existing electricity grid

connecting two demand nodes in the corner of the area. The connected demand

nodes represent relatively small populations. New connections are selected using a

sequential algorithm.

98 nodes (no change) +4% +13%

(+12%)

(12) Sequential algorithm, low target population: there is an existing electricity grid

connecting two demand nodes in the corner of the area. The connected demand

nodes represent relatively small populations. New connections are selected using a

sequential algorithm. The target population is one-half of the population reached in

the base scenario.

77 nodes (pop �48%) +24% �13%

(+70%)
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penetration rate was 100%, but only 54 were compatible when the
penetration rate was reduced to 25%, and the average connection
cost more than tripled. However, all the high-population nodes
were still incorporated into the grid, so the 75% reduction in
population coverage was primarily due to the reduction in
penetration rate rather than the reduction in the number of
nodes covered.

We also tested the impact of population clustering within the
demand nodes, which reduces inter-household distance and thus
the amount of LV line needed to connect each household. As
expected, the average connection cost was reduced for lower
inter-household distances. The resulting network also changed so
a slightly different set of nodes were grid compatible in this
scenario. The new network required more MV backbone per
household, primarily because a few nodes requiring a lot of MV
backbone became grid compatible when their inter-household
distances were reduced.

If the cost of an off-grid alternative such as solar PV is reduced,
the geographic area in which grid extension is the most cost-
effective technology is reduced. In a test scenario, when the
capital cost of solar PV was cut in half, the number of grid
compatible nodes dropped from 83 to 50. Since the connected
nodes tended to be the ones with the lowest grid costs, the
average connection cost in grid compatible nodes dropped by 14%.
As with the previous scenarios, the change in the population
connected to the grid was small relative to the change in average
connection costs.

Test scenarios also revealed that our algorithm is not very
sensitive to the location of the existing grid, even though any
existing lines are always incorporated into the expanded network.
This is primarily because the characteristics of demand nodes,
including total electricity demand and population density, have a
stronger effect on network expansion than the location of demand
nodes in space.

Finally, we compared the performance of our algorithm with
the performance of a sequential algorithm that searches for new
connections step-by-step by moving outward from the existing
grid. We confirmed that the sequential algorithm tends to connect
more nodes to reach the same level of population coverage,
resulting in higher average connection costs and a longer MV
backbone per household. Overall, our approach appears to be an
improvement over a sequential approach to electricity planning,
and our model captures the effects of a range of geographic and
policy factors that affect grid expansion and costs.
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Penetration: 100% 
Nodes Connected: 83%           
Population Covered: 99%

Penetration: 25% 
Nodes Connected: 54%           
Population Covered: 75%

Fig. 7. Comparison of computed grid extension for two different penetration rates using a 100-node test region. No pre-existing grid was assumed for these illustrative

examples. (a) Least-cost connected network if a 100% penetration rate is assumed for each connected note. (b) Similarly, a network where each connected node is assumed

to have a 25% penetration rate.

Table 4
Assumed penetration rates for national grid extension scenarios in Kenya.

Demand

category

Current penetration rate Target penetration rate

(all demand nodes)

Demand nodes

without

existing

MV lines (%)

Demand

nodes

with existing

MV lines (%)

Realistic

penetration

scenario (%)

Full

penetration

scenario (%)

Sparse, poor 0 10 30 100

Sparse,

non-poor

0 10 30 100

Dense, poor 0 10 30 100

Dense,

non-poor

0 30 65 100
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5. National grid extension case study of Kenya

We applied the model to the problem of grid extension in
Kenya to test its performance at a national scale, and to explore
how connection costs are related to Kenya’s human geography.
We also identified opportunities for lower cost grid extension. We
assumed a base year of 2007 and a time horizon of 10 years.

We compared two scenarios: full penetration and realistic
penetration (Table 4). In the full penetration scenario, we assumed
100% penetration in every connected demand node. In the realistic
penetration scenario, we assumed a 65% penetration rate in dense,
non-poor demand nodes and a 30% penetration rate elsewhere
based on consultations with KPLC. In the realistic penetration
scenario, the assumed penetration rates are considered a basic
indicator of the number of households in each demand category
with the ability to pay for an electricity connection.

The computed results for the realistic penetration scenario
show that 5565 out of the total 6737 demand nodes would be
connected to the national grid, where each demand node
represents a sublocation in Kenya. In this scenario, 41% of the
households in the country, or about 4.1 million households, would
be grid connected within 10 years. Note that these figures include
the �1 million households that are already connected to the grid
and account for population growth over the 10-year time horizon.
The number of new households connected to the grid is
3.1 million. The number and percentage of households that would
be connected in each demand category, along with the national
totals, is shown in Table 5. As expected, coverage of densely
populated demand categories is higher than coverage of sparsely
populated demand categories.

The assumed penetration rates constrain the maximum
number of connections possible in each demand node, explaining
why only 41% of total households in Kenya are covered in the
realistic penetration scenario. However, 93% of all households are
located within sublocations where grid electrification is the most
cost-effective option. This indicates that in the long-term, if the
relative costs of technologies remain the same, grid electrification
is likely to be the most cost-effective technology for much of
Kenya’s population.

The average cost per household for grid-electrification is
shown in Table 6 to be $1907. The total capital cost of connecting
all 3.1 million new households in this scenario is approximately $6
billion. These estimates are based on unit costs of infrastructure at
the time data were gathered. Unit costs can change as material
costs change, and with supply chain development that can come
with intensified procurement. Moreover, since the model includes
multiple approximations, these numerical estimates must be
treated with the appropriate caution. The breakdown across MV
backbone, MV secondary lines, and LV lines, averaged across all
households is shown in the last column of Table 6. Nationally the
costs of distribution from the last transformer, which include LV
lines and household connection equipment, represent the largest
component of the costs (66% of the total). This result suggests that
lowering the cost of the LV distribution system – perhaps through
single-phase lines, altered standards, or bulk procurement – could
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Table 6
Summary of connection costs for realistic penetration scenario.

Infilling Grid extension Total

Number of households (millions) 2.070 1.005 3.075

Total costs (millions USD)

MV backbone � 123 123

MV secondary lines 659 1118 1847

LV lines and HH equipment 2580 1316 3895

Total 3239 2627 5866

Average cost per household (USD)

MV backbone � 123 40

MV secondary lines 318 1183 601

LV lines and HH equipment 1246 1309 1267

Total 1564 2615 1907

Percent of average cost

MV backbone � 5% 2%

MV secondary lines 20% 45% 32%

LV lines and HH equipment 80% 50% 66%
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Fig. 8. Total number of households that could be connected at each capital

investment level. Note that curves begin above 0 because there are already

approximately 1 million households connected in Kenya. Capital costs are shown

for realistic and full penetration scenarios.

Table 5
Summary of population coverage for realistic and full penetration scenarios.

Demand category Total in Kenya Grid compatiblea

Realistic

penetration

Full

penetration

Sparse, poor

Demand nodes 1843 1109 1371

Households (millions) 1.625 0.351 1.348

Households (% of

category)

100% 22% 83%

Sparse, non-poor

Demand nodes 1518 1135 1291

Households (millions) 1.448 0.373 1.348

Households (% of

category)

100% 26% 93%

Dense, poor

Demand nodes 1819 1781 1796

Households (millions) 3.249 0.975 3.249

Households (% of

category)

100% 30% 100%

Dense, non-poor

Demand nodes 1557 1540 1544

Households (millions) 3.726 2.422 3.726

Households (% of

category)

100% 65% 100%

Total

Demand nodes 6737b 5565 6002

Households (millions) 10.048 4.120 9.671

Households (% of

category)

100% 41% 96%

a In both scenarios, all grid compatible households are assumed to be

connected over a 10-year period beginning in 2007 and ending in 2017. The

numbers presented in this table include pre-existing connections in addition to

new household connections.
b Kenya’s 6612 sublocations are represented by 6737 demand nodes.
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have a significant impact on reducing the costs of grid electrifica-
tion. The importance of lowering the LV line costs is especially
important to note in the case of infilling nodes, where 80% of the
average capital cost per household is associated with LV line and
household equipment compared to 50% in grid extension nodes.

Fig. 8 shows how the total capital cost for each of the scenarios
varies with the total number of households covered. The marginal
cost of connecting additional households rises as households in
more costly demand nodes are reached, and this causes the
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Capital Cost per Connection (USD)

< 1000 1001 - 2000 2001 - 3000 3001 - 4000 > 4000

a b

Fig. 10. Capital cost per household connection, averaged by sublocation (demand node) and shown for each sublocation that is grid compatible in Kenya. (a) Realistic

penetration scenario. (b) Full penetration scenario.

20 Although infilling areas also tend to have higher per-household electricity

demand, which is associated with slightly higher internal costs, this is outweighed

by these other factors.
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average per-household connection cost to increase. In the realistic
penetration scenario, the first million households can be
connected for approximately $0.8 billion, the next million for
$1.4 billion, and the final 1.1 million for $3.7 billion. This effect
becomes more pronounced in the full penetration scenario, where
8.7 million new households could be connected for $13.4 billion,
but 6.5 million households (75% of the total 8.7 million) could still
be connected for just half of that ($6.7 billion).

In the full penetration scenario, the higher target penetration
rate for connected nodes both reduced the average connection
cost and increased the number of grid compatible nodes. In this
scenario, 424 additional demand nodes were covered and 96% of
the population was connected at an average cost of $1552 per
household. The average connection cost was reduced because the
cost of MV distribution infrastructure was spread over a larger
number of households. This resulted in grid electrification being
the most cost-effective technology in many additional demand
nodes that require substantial MV backbone to reach. These
results suggest that in cases where there is a fixed budget for a
national connection program, the highest number of households
can be reached by focusing on lower cost demand nodes first, and
by connecting a high percentage of the households in each of
these nodes (i.e. by moving toward full penetration in each
connected demand node).

The situation in Kenya is characterized by substantial existing
MV infrastructure in high-density areas, but low penetration
rates. In such a case, there is a cost advantage to focusing
on infilling opportunities, where existing infrastructure and
relatively low inter-household distances reduce electrification
costs.20 Fig. 9 shows that in the realistic penetration scenario, over
30% of infilling households, but only 10% of grid extension
households, have a connection cost of under $1000. In the full
penetration scenario, 46% of infilling households and 14% of grid
extension households have a connection cost of under $1000.

There is considerable spatial variation in the average house-
hold connection cost. Fig. 10a shows the spatial distribution of
costs for the realistic penetration scenario, and Fig. 10b shows the
distribution for the full penetration scenario. These figures
confirm the attractiveness of connecting peri-urban areas around
Nairobi as expected, but it is noteworthy that low-cost connection
opportunities also exist in the poorer rural areas of the Western
and Nyanza provinces. Knowledge of spatial variation in costs can
be used to identify network branches with the lowest average
connection costs. This information may be useful to planners who
must select a subset of the grid compatible demand nodes to
include in a scale-up program constrained by a fixed budget or
time horizon, or designed to meet a target electrification rate.
However, since prioritization within small regions depends on the
level of connectedness one level higher, utilities must consider
plans for overall network evolution when focusing on smaller
regions.
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Fig. 11. Assumptions and results shown for infilling-type connections for a section of Kenya near Nairobi. (a) Population distribution. (b) Demand categories. (c) Existing

electricity grid. (d) Grid compatible sublocations. (e) Average per-household connection cost. (d) Additional peak demand.
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Figs. 11 and 12 compare and contrast two different regions of
Kenya, one a densely populated region near Nairobi (Fig. 11), and
the other a sparsely populated region in the western part of the
Rift Valley (Fig. 12). These regions are also shown as insets in
Fig. 2. Figs. 11a, b, and c show the key inputs into the model,
illustrating the high density, low poverty and extensive existing
infrastructure that characterize this area. The results shown in
Figs. 11d and e confirm that grid electrification is indeed the
lowest cost option for this region, and that average household
connection costs are relatively low. In contrast, in the sparsely
populated western Rift Valley region, grid compatibility is in
the vicinity of the existing MV network shown at the bottom of



ARTICLE IN PRESS

Density and Poverty (Index)

Sparse, Poor

Sparse, Non Poor

Dense, Poor

Dense, Non Poor

Existing KPLC Grid
220 kV
132 kV
66 kV
33 kV
11 kV

Capital Cost per Connection (USD)
< 1000

1001 - 2000

2001 - 3000

3001 - 4000

> 4000

Peak Demand (MW)
< 0.10

0.11 - 0.25

0.26 - 0.40

0.41 - 0.55

> 0.55

Protected Area

Population Distribution
People/sq km

< 125
126 - 250
251 - 500
> 500

0 25 50

Kilometers

Grid Compatibility

Existing Grid

Extended Grid 

Off Grid

Fig. 12. Assumptions and results shown for grid extension-type connections for a section of Kenya in the western Rift Valley. (a) Population distribution. (b) Demand

categories. (c) Existing electricity grid. Note that the transmission line that ends near the protected area is a high-voltage spur from a power plant. (d) Grid compatible

sublocations. (e) Average per-household connection cost. (d) Additional peak demand.
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Fig. 12c. Fig. 12d reveals that, while grid extension is the most
cost-effective technology in some sublocations, much of the
region is best served by off-grid technology. Even in grid
compatible areas, the average connection cost usually exceeds
$4000 per household.
Analysis of different regions within Kenya also highlights
differences in how new connections may affect peak demand on
the network (Figs. 11f and 12f). Sparser rural areas not only have
fewer households, but also tend to have lower demand per
household and are often connected at a lower penetration rate,
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both of which are reflected in our realistic scenario. This means
that additional peak demand will tend to be lower in sparser areas
compared with dense, infilling areas. In either case, upgrades to
the existing network may be needed to support the additional
demand. Fully accounting for network upgrades and transmission
costs may increase household connection costs more in some
places than in others, so electricity planning efforts should
consider whether there are opportunities to connect additional
households without upgrading the existing MV distribution
network or increasing the generation capacity.
6. Conclusions, policy outcomes and further research

Meeting national electrification targets in Kenya, and else-
where in SSA, requires a substantial and rapid increase in
electricity access. The tools developed in this paper can help
planners estimate investment costs and financing requirements to
support electrification programs and identify opportunities for
cost-effective grid expansion. Incorporation of spatial information
at a geographic resolution of small administrative units
(e.g. sublocations in Kenya) allows for comparison of costs within
and across regions without the computational expense of treating
each household as an individual demand node. Inclusion of high-
resolution socio-economic data can help to identify grid expan-
sion opportunities in impoverished regions that may be eligible
for specialized financing programs.

We found that the penetration rate, an exogenous variable
chosen by planners, often had a greater effect on average
connection cost than inter-household distance, per-household
demand, and proximity to the national grid. This suggests that
planners should intensify regional connection programs.

Further research is needed to more fully incorporate genera-
tion costs associated with different technology options. Opportu-
nities to expand Kenya’s renewable generation capacity should be
evaluated as part of comprehensive electricity planning efforts.
Kenya’s abundant supply of hydro and geothermal resources
warrants particular attention to how these resources can be
further developed to support expanded access to the national grid,
as well as in isolated, off-grid settings. Other alternatives to fossil
fuels, including solar thermal and wind power, may also be viable
in Kenya. A spatial model that considers the full set of
electrification options given the distribution of demand and
energy sources would improve electricity planning across Sub-
Saharan Africa.
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