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Infrastructure planning for networked infrastructure such as grid electrification (or piped supply of

water) has historically been a process of outward network expansion, either by utilities in response to

immediate economic opportunity, or in response to a government mandate or subsidy intended to

catalyze economic growth. While significant progress has been made in access to grid electricity in Asia,

where population densities are greater and rural areas tend to have nucleated settlements, access to

grid electricity in Sub-Saharan Africa remains low; a problem generally ascribed to differences in

settlement patterns. The discussion, however, has remained qualitative, and hence it has been difficult

for planners to understand the differing costs of carrying out grid expansion in one region as opposed to

another. This paper describes a methodology to estimate the cost of local-level distribution systems for

a least-cost network, and to compute additional information of interest to policymakers, such as the

marginal cost of connecting additional households to a grid as a function of the penetration rate. We

present several large datasets of household locations developed from satellite imagery, and examine

them with our methodology, providing insight into the relationship between settlement pattern and the

cost of rural electrification.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Progress in providing electricity coverage has been particularly
slow in tropical Africa, i.e. Sub-Saharan Africa with the exception
of South Africa (Bekker et al., 2008). In addition to economic
factors, a reason frequently cited for this slow progress is that
many of the populations in this region live in dispersed rural
settlements, making the costs of networked infrastructure
intrinsically higher (Haanyika, 2006). The objective of this paper
is to directly address the question of how these population
settlement patterns influence the cost of electrification. Given
limited funding, understanding the impact of the spatial structure
of the population on infrastructure costs is critical in the planning
phase of a project; however, existing proxies such as population
density prove inadequate as predictors of costs in a rural setting.

Given the possibility of acquiring detailed local-level informa-
tion from remote-sensing data, we develop a new method for
estimating a more detailed, per-unit cost of infrastructure, while
taking into account population structure. Since settlement
patterns influence the cost of local distribution networks while
not directly impacting the costs of transmission and generation,
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we focus on these local networks, and on the problem of how
to optimize their per-unit cost. For a broader-scale look at
rural energy development, at the national scale, see Parshall
et al. (2009).

We first provide a background on the motivating factors for our
analysis (Section 2) and then go into our approach (Section 3),
testing our methods on a new dataset (Section 4). A discussion of
our results is then presented (Section 5).
2. Background

2.1. Rural energy background

The United Nations reaffirmed the ‘‘Millennium Development
Goals’’ (MDGs), at the 2002 World Summit on Sustainable
Development. While there is no explicit mention of electricity or
roads as specific ‘‘goals’’, there is substantial evidence (Modi et al.,
2006; Saghir, 2004) that achievement of the MDGs will not be
possible without commensurate investments in electricity and
transport infrastructure. At present, the International Energy
Agency estimates that nearly 1.6 billion people worldwide do
not have access to electricity. Governments of countries where a
dominant fraction of the population does not have access to grid
electricity are now emphasizing the critical role that electricity
services play in promoting human development.

www.sciencedirect.com/science/journal/jepo
www.elsevier.com/locate/enpol
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As they attempt to find the best way to increase coverage,
governments also are seeking an understanding of the various
modalities of public and private sector contributions. These
modalities require a detailed understanding of the cost structure
of electrification in rural settings. The broad cost structure
consists of generation costs, transmission costs (everything from
the power plant up to 33 kV lines, or in some countries 11 or
66 kV) and distribution costs (everything downstream from 11 to
440 V). Many countries foresee a situation where the local
distribution is built and managed by franchisees that manage
one or more local feeders (e.g. Senegal, Mali). Knowledge of the
variability in local distribution costs due to settlement patterns
can allow better structuring of arrangements with franchisees and
determination of the appropriate level of public sector contribu-
tion as one attempts to shift from a state-dominated power
system to one where private ownership and market forces play a
larger role (Victor and Heller, eds., 2006; World Bank, 2002; Rufin
et al., 2003).

Rural energy planning has, thus far, focused primarily on the
national to regional scale. Experience has been gained in design
and implementation of rural electrification projects at the
national level, with reviews such as that by Bekker et al. (2008)
in South Africa, and Haanyika (2008) in Zambia providing a basis
for future policy and systems design. However, much work
remains to be done, particularly on the local level. Large parts of
Sub-Saharan Africa remain without access to electricity, and the
lack of cost-effective, reliable energy services hampers develop-
ment (World Bank, 2008).

Interconnection of regional grids and new technologies for
distributed power generation and storage offer the potential for
providing energy services at reduced cost. Effective implementa-
tion of these technologies; however, requires a new planning
approach that can consider information across spatial scales.
Energy storage, for instance, is a critical component of any
distributed energy system; when effectively utilized, storage
allows improved efficiency and lower cost generation, as peak
demand can be met with less generation capacity (see, for
example, ESMAP, 2007). To be effective; however, storage systems
must be located appropriately. Transmission losses between
generation and storage systems as well as from storage systems
to demand centers must be minimized. Optimizing the location of
these facilities requires considering the trade-offs involved on
both the local and regional level. A better understanding of local-
level dynamics is a first step towards this goal.

Agricultural development also requires a better understanding
of small-scale energy economics. African agriculture, already
vulnerable to seasonal and inter-annual climate variability, will
be increasingly tested with climate change. According to the
Intergovernmental Panel on Climate Change, by 2050, up to 600
million people are likely to experience increased water stress
(Boko et al., 2007). Increased usage of groundwater or water
storage for irrigation and domestic supply is one option for
increasing the resilience of African agriculture and rural popula-
tions (Peacock et al., 2008). However, any substantial new
developments will require energy for construction as well as for
long-term maintenance and pumping. In addition, water planners
must overcome optimization challenges on both the micro- and
macro-scale similar to those encountered in energy planning (the
algorithm we develop here for energy infrastructure may be
relevant for planning water networks), as topography is critically
important in the hydrological context. New advances in high-
resolution elevation measurement (such as LIDAR) provide
sufficient resolution for small-scale study of local topography
(Rayburg et al., 2009). Assimilation of this data is essential for
irrigation design as well as for accurate estimation of likely energy
demand due to water infrastructure.
Although significant progress has been made in large-scale,
national, and regional planning and optimization of energy
networks supporting rural electrification, new technologies re-
quire integration of data across spatial scales to achieve the most
cost-effective, efficient solutions. The development of design
strategies that manage the unique difficulties encountered in rural
areas and that consider local-level data in conjunction with the
regional scale picture is important for planning cost-effective rural
energy networks. New methods for considering data on the local
scale are a first step towards bridging the gap between models. A
focus on local-level planning, using household-level location data,
offers the potential to optimize energy systems, reduce the high
costs associated with dispersed population structure, and max-
imize the potential of a region for further economic development,
while simultaneously increasing the capacity of developing
regions to cope with environmental challenges, such as climate
variability and change (Yohe et al., 2007).

2.2. Modeling local-level infrastructure costs

Household and hence demand location data is not widely used
in large-scale energy models. As local arms of the utility generally
have good knowledge of the demand in the immediate vicinity of
their network, from a utility perspective the need for such data
has not been of urgency. In most areas, location data is either
unavailable, or of insufficient resolution to provide useful
information for demand modeling. The general practice is to
avoid direct consideration of individual users and to instead
aggregate demand by assuming full connectivity of the population
in a given area. A factor can then be used to estimate the likely
demand of the aggregated populace (as in Kaijuka, 2007). Sparsely
inhabited areas; however, are expensive to connect, and connec-
tion of the entire population of an area may be sub-optimal. The
sparse nature of rural populations generally increases connection
costs per household compared to urban areas due to longer
average distances between households, and often extreme
topography. Additionally, recovery of operating and installation
costs from consumers is often difficult in rural areas due both to
individuals limited ability to pay for service and to the lack of
large commercial and industrial users to bear the brunt of the
costs. Geographic and other factors might, therefore, make
connection of some portion of the population in a given area
prohibitively expensive. Current models do not consider this
possibility, and do not allow determination of the optimal degree
of electrification, or ‘‘penetration’’ in an area.

2.3. Optimizing the penetration rate

An important concern for utilities is the initial decision to
extend a network into an otherwise unserved area. Initial
expansions are generally limited to strategic demand points, as
both the total and per-household (or demand point) investment
costs can generally be reduced by excluding distant households
from the grid, due to the resultant savings from avoiding very long
cable runs and underutilized transformers. However, although
costs may be reduced in the short term by such a strategy; the
impact on longer term expansion costs must be considered: if
such a network is expanded to full coverage, will the final cost be
higher than if it had initially been built to serve the full
population? To address this question, we examine the role of
population structure in offering the potential for cost-savings due
to partial penetration, as well as the trade-offs faced with the later
expansion of these optimized networks.

To better handle the large amounts of data (individual
demand points, or structure locations), as can be gathered using
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Fig. 1. The locations of the four Millennium Villages sites discussed here.

Table 1
QuickBird imagery collected for the four sites.

Site Image capture date(s) Area of image

(km2)

Number of

structures
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remote-sensing, while also considering the costs of network
construction at a range of penetration rates, we have developed
the ‘‘composite Prim’s algorithm’’ (CPA) as a simple heuristic
approach to optimizing the penetration rate.
Mbola 7/3/2007 100 1175

Potou 1/26/2007 95.5 1797

Ruhiira 6/22/2003, 10/13/2006,

4/29/2007

100 6434

Tiby 12/17/2005 100 2496
3. Methodology

To consider the cost-effectiveness of rural electrification in a
given area, two methods are developed. The first is an index to
allow simple comparison between sites of the similarity of
population structure. The second is an algorithm to construct a
full profile of the cost of electrification with increasing penetra-
tion. While the index provides a simple metric for considering the
spatial structure of a site, the algorithm we propose is useful for
determining the optimal extent of electrification in a particular
area, with the results used to feed regional and larger scale
models, and to better inform design and policy decisions.

To test the algorithm and indices, we use a new dataset
(presented in Section 3.1) of structure locations gathered at four
sites in rural Africa. After clarifying our terminology for the
qualitative description of settlement pattern (in Section 3.2), we
present three approaches for characterizing the cost of rural
energy infrastructure investment as a function of population
structure (Sections 3.3–3.5).

3.1. Data

The algorithms are tested on a new dataset collected from
several of the African Millennium Villages sites. The Millennium
Villages project focuses on empowering villages through public
investments to develop critical infrastructure and social capital
needed for achieving the United Nations Millennium Develop-
ment Goals. Further background, as well as preliminary project
results, is discussed in Sanchez et al. (2007).

Structure-level location data has been gathered from nine of
the Millennium Villages sites; four sites (Mbola, Tanzania; Potou,
Senegal; Ruhiira, Uganda; and Tiby, Mali) that provide examples
of commonly encountered population distributions were selected
for discussion here (see the map in Fig. 1, and see Table 1 for basic
statistics on the sites). The datasets collected for the Millennium
Villages sites generally have around 3000 structures, with some
sites having in excess of 17,000.

The structure location data used in our model to estimate
network costs were digitized from QuickBird satellite imagery of
each site. The images were obtained in two forms: a four band
multispectral image at 2.4 m resolution and as a panchromatic
image at 60 cm resolution. Prior to digitizing structure locations,
the 2.4 m resolution imagery was pan-sharpened to 60 cm
resolution, and then orthorectified using a 90 m resolution SRTM
digital elevation model. An appropriate stretch (generally linear)
was used on each image to improve the contrast, depending on
cloud cover and on the overall brightness of each image.

Structure locations were hand-digitized from the processed
imagery, generally at around 1:2000 scale. A 1 km2 grid was used
on each image to ensure the entire image was covered during
heads-up digitization. On each image, all visible roofs (referred to
here as ‘‘structures’’) were manually recognized and marked (see
Fig. 2). Each structure does not necessarily correspond to an
individual ‘‘household’’. Some households, for example, might
possess more than a single structure, using individual buildings
for living or storage spaces. These distinctions; however, are
difficult to detect from the air. We here consider ‘‘full penetration’’
of an area to mean complete electrification of all structures—

future work is required to better understand the relationship
between structures detected from the air and actual population
densities (which are dependent on the number of individuals per
household).

For most sites, a single QuickBird image, generally covering a
10�10 km2 area, was sufficient to cover the entire site. In areas
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Fig. 2. Structure locations at the four sites: (a) Mbola, (b) Potou, (c) Ruhiira, and (d) Tiby. Each dot represents a single structure. Each site is approximately 10 by 10 km.
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where a single image covered the entire site, all points were
weighted evenly. However, several larger sites (Ruhiira, Uganda is
discussed here) required the composition of multiple images to
fully cover the required area. In these cases, points were digitized
off each individual image in turn, and the multiple resulting
datasets were combined after manually checking the data to
prevent duplication of information in the final combined set of
points. In Ruhiira, three images were used, two acquired in 2003,
and one in 2007. A significant area of overlap between the 2003
and 2007 imagery allowed estimation of the degree of population
growth that occurred in the intervening four years. To account for
this growth, a correction factor was applied to points in the 2003
dataset so as to weight them more heavily in the analysis than the
2007 points.
3.2. Qualitative evaluation of settlement pattern

Although the data acquired thus far shows a broad range of
spatial distributions of populations (see Fig. 2), there are common
features that have been observed. Qualitatively, sites can be
classified as sparse or dense, and nucleated or dispersed. A sparse
site has a relatively low density as compared to a dense site.
A nucleated site shows clustering of population around
certain centroids, whereas a dispersed site is closer to a random
distribution (a Poisson distribution) of points around the
landscape.
Using these relative terms, a site can therefore be nucleated
but sparse, or dense yet dispersed. While Ruhiira, Uganda is
densely populated (compared to the other areas we discuss here)
it is not nucleated, although topography and local road networks
influence settlement locations to some extent. Tiby, Mali ex-
emplifies the most nucleated areas, with a small number of very
dense clusters of structures dotting the landscape. Potou, Senegal
and Mbola, Tanzania fall in between these two extremes. Potou
shows nucleation in the south and along the coast in the west, and
is otherwise dispersed. Mbola features one large cluster in the
south, while the remaining area is sparse.
3.3. The homogeneity index

Based on the household location data that we have collected
and processed, it is evident that the distribution of households
displays distinct characteristics for each of the regions under
study. To facilitate the quantitative comparison of spatial
structures among regions, we propose a new measure called the
homogeneity index (HI) that serves as a proxy for the degree of
dispersion of the households within each region. This measure is a
variation of the classical nearest neighbor index due to Clark and
Evans (1954), which we describe below prior to introducing the
exact definition of the HI.

For a given set of n points, let Rnear denote the average distance
between each point and its nearest neighbor (where the average is
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taken over the set of points). Now, as a benchmark, consider the
problem of maximizing this quantity by changing the location of
these n points within a given area. It turns out that one can solve
this problem by arranging these points in a regular repeated
hexagonal shape such that each point has six nearest neighbors
(similar to a bee-hive shape). In this case, the maximum possible
value of Rnear, which we now denote by Rmax, is given by
Rmax ¼ (21/2)/(31/4r1/2) where r ¼ n/A denotes the density and A

the area. The nearest neighbor index of Clark and Evans is defined
as the ratio Rnear/Rmax. By definition, this index ranges between 0
and 1.

To better estimate the impact of the spatial distribution of
structures on network cost, we modify the definition of the
average distance by considering the minimum spanning tree
(MST) (see Section 3.4 for details on calculating this network).
Given a set of structures, the MST is a collection of segments (each
connecting two structures) such that all the structures are
connected and the total length of the network is as small as
possible. For the discussion in this paper, all structures are given
an equal weight except for correcting differences in the dates of
image acquisition (Section 3.1), although weighting factors
accounting for differential demand, topography, or other factors
could easily be incorporated. Segment length is computed as two-
dimensional Euclidean distances.

To compute the HI, then, let RMST denote the average length of
the segments in the MST, which refers to the mean interhousehold
distance (MID, or average segment length) in the MST network.
We define the homogeneity index by the ratio RMST/Rmax, and this
index also ranges from 0, where the all the points are clustered at
the same location, to 1, where all the points are in the regular
repeated hexagonal shape mentioned above. We use this index as
a measure of dispersion or nucleation.
Fig. 3. A four-structure example of the Prim’s algorithm.
3.4. Composite Prim’s algorithm

The partial electrification problem, which we study in this
paper, is to construct a network such that the mean interhouse-
hold distance is minimized subject to the requirement that the
network connects a pre-specified percentage of the households;
we refer to this percentage as the penetration rate. We are
interested in the total length of the network, since we assume that
costs are linearly related to the total length as a first approxima-
tion. A further simplification is made in that the additional cost of
transformers is assumed to simply be proportional to the low-
voltage network length (as in rural settings the local, low-voltage
line network is the dominant component of the infrastructure
(ESMAP, 2007)). We, therefore, measure costs in units of length
(meters), rather than in direct monetary units. When comparing
different possible networks, we define the unit cost of a network
as the mean segment length per connection for that network, or
the mean interhousehold distance. An optimal network for
connecting a given percentage p of households, is defined as
MID(p%), meaning the network with the minimum MID for the
penetration rate p (note that MID without any argument
corresponds to MID(100%)).

While this problem is not easily solvable, the special case of the
problem with the penetration rate of 100% (full penetration) is
easy to solve. We review an optimal algorithm for the special case,
and then adapt it for an arbitrary penetration rate. In graph
theory, each point is called a ‘‘node’’, and each segment is referred
to as an ‘‘edge’’. For clarity, we will refer here to the points (or
nodes) as ‘‘structures’’ and we will call each length of wire
connecting a pair of structures a ‘‘segment’’.

If the penetration rate is 100%, this special case of our problem
is known in the literature as the minimum spanning tree problem
mentioned above. Given a set of structures, where each structure
represents a location requiring electricity, the objective is to find
the segments (direct connections between two structures) such
that all the structures are connected and the total length of the
segments (or equivalently the average segment length) is as small
as possible. This problem can be solved using an algorithm due to
Prim (1957). The algorithm works by first choosing any structure
as a starting point, and by then adding the shortest segment
emanating from that structure to the network, or ‘‘tree’’. The
process then repeats. At each iteration, the shortest segment
emanating from the structures already in the tree is added.
Segments that would create a cycle (connecting the existing
network to itself) are avoided. When all the structures have been
added to the tree, the process is completed.

We illustrate this algorithm on a set of structures shown in
Fig. 3. In this four-structure example, suppose that the initial
structure is D. Then the structure that is closest to D is C, and we
add segment (C, D) to the network. At the next iteration, the
structure that is closest to either C or D is B, and we add (B, C) to
the network. Continuing with the algorithm, we obtain the
spanning tree consisting of (C, D), (B, C), and (A, B), and the
corresponding mean interhousehold distance is (5+1+0.5)/3 ¼
2.167. The sequence in which the segments are added to the set
depends on the chosen initial structure; however, the final
spanning tree does not depend on the initial structure under
mild regularity assumptions (for example, that no two segments
have identical lengths).

For a general penetration rate p% (that is less than 100%), there
exists no computationally efficient algorithm to solve the problem
of minimizing the network length subject to the penetration rate.
For a fixed penetration rate, we modify Prim’s algorithm as
follows. For each initial structure, we run the Prim’s algorithm
until the required penetration rate is achieved. By running this
algorithm repeatedly, using a different initial structure for each
run, a series of different networks can be calculated.

Although the minimum spanning tree is identical (it is the
optimal solution) regardless of the first structure chosen to start
the network, the cost at a given percentage penetration is
dependent on the starting point. This is intuitively clear when
an example is considered: assume a given set of structures is
sparsely distributed throughout a space with the exception of 10%
of the structures clustered densely in one area. If a starting point
for the network is picked in the middle of the dense cluster, the
total cost to connect 10% of the population will be fairly low, as
10% of the population happens to be clustered densely around the
starting point. If, however; a starting point were chosen far from
this single dense cluster, the total cost to connect 10% of the
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structures would be relatively large, due to the large distance
between the 90% of the structures not in the dense cluster.

From the set of networks calculated above, we take, for each
penetration rate p%, the network with the minimum total length,
and denote the average segment length of each of these networks
by MID(p%). In the example given in Fig. 3, suppose we are
interested in a penetration rate of 75%. If the initial structure is D,
then we terminate Prim’s algorithm after adding (C, D) and (B, C),
resulting in a network with total length 5+1 ¼ 6. If the initial
structure is C, then the algorithm terminates with (B, C) and (A, B)
with total length 1+0.5 ¼ 1.5. If the initial structure is either A or B,
we obtain the same network with the total length of 1.5. Thus,
MID(75%) ¼ 1.5/2 ¼ 0.75. We refer to this algorithm as the
composite Prim’s algorithm.

One of the problems facing the planner is to decide the
penetration rate in each region, and such a decision should strike
a balance between the benefit of higher penetration and the cost
of electrification. To this effect, we produce a curve of the cost of
electrification MID(p%) with rising penetration rate p%. From this
curve, we can also deduce the total interhousehold distance, as
well as the marginal interhousehold distance. The marginal
distance is calculated for each penetration rate as the cost of
connecting the next structure to the grid, and presented here as a
smoothed curve to aid in interpretation (smoothed over a window
covering 10% of the segments at the site).

We make several remarks on the CPA. The MID(p%) represents
the cost of the network when the network is built from scratch,
and it is possible that a structure that is included in the network
for a lower penetration rate becomes excluded for a higher
penetration rate. Also, the total cost of the network at a given
percentage penetration is dependent on the starting structure. A
plot of cost versus penetration rate can be produced for each
starting structure; as seen in Fig. 4, the cost curve can be radically
different depending on the chosen starting structure, particularly
for low penetration rates. By the definition of the algorithm, the
network that the algorithm produces for any penetration rate is a
truncated version of the regular Prim’s algorithm, and thus it is a
subset of the MST. Therefore, at full penetration, the cost
computed by the algorithm is the same regardless of the
starting structure. This occurs since the fully spanning network
is the same in both cases; it is the MST.

This subset property has a useful implication to computation,
since the algorithm can restrict its attention to consider only
segments within this MST in computing the network with any
penetration rate. Now, for possible choices of the initial structure,
we can use all the structures if the number of structures is small
(less than approximately 10,000 structures on a recent desktop
Fig. 4. The interhousehold distance versus penetration rate plotted for two of the

best starting points in Potou, Senegal.
computer); otherwise, we select enough initial structures such
that increasing this number does not significantly affect the
quality of solutions. We emphasize that the CPA is a heuristic
approach to solve the partial electrification problem, and it is
by no means an optimal algorithm even though it performs
well in practice. We discuss another heuristic approach later
(in Section 5.3).

3.5. Distribution of network segment lengths

To compare the networks generated by the composite Prim’s
algorithm across sites, we consider each network as a collection of
segments (individual lengths of wire) connecting individual
structures. Different population distributions lead to different
types of networks, with some networks dominated by shorter or
longer segments. Networks in nucleated sites have a large amount
of wire in short segments, due to the large number of closely
situated structures. Networks for sites with a small number of
dense clusters would be expected to also have a small number of
very long cable runs in their network: those segments that make
connections between clusters. A site with a random distribution of
structures would be expected to show the most weight in the
midrange of segment lengths, while having few very long or very
short segments. The distribution of segment lengths for sites
where the population distribution varies across the site would be
expected to show some combination of these attributes. To make
comparisons of networks at different sites, we construct a
histogram for each site showing the total length of the network
that is made up of a range of segments lengths. The height of each
bin within the histogram is equal to the sum of the lengths of all
segments that are within the range of lengths contained within
the bin. For consistency of display, we choose a bin size of 25 m,
with the final bin in each histogram containing all segments
ranging from 425 m up to the longest segment in the network.
4. Results

The CPA was run (Fig. 5), and the homogeneity index calculated
(Table 2), on four of the Millennium Villages sites. The four sites
were selected so as to display a range of population distributions:
from nucleated, as in Tiby, Mali, to homogeneously distributed, as
in Ruhiira, Tanzania. For each site, every structure was used as a
potential network starting point in the CPA. Mean and marginal
network costs were calculated for each site using the CPA (Fig. 5),
and the segment length distributions of the MST of each site were
plotted (Fig. 6).

Below we discuss the results for each of the four sites,
considering how each type of population structure determines
the observed cost profiles. We then follow (in Section 5) with a
more general evaluation of the algorithm, and discuss potential
applications. We do not attempt to discuss in detail those political,
economic, and geographic factors that have determined the
population structure at these sites; our focus here is to under-
stand how the existing patterns themselves might impact the cost
of infrastructure investments.

4.1. Mbola, Tanzania

The area of Mbola (near the town of Tabora), Tanzania
considered here shows a sparse pattern of population, with little
clustering of households except for two areas in the southwest.
These dense areas allow interconnections within a portion of
the population (up to about 15%) with a relatively low MID (see
Fig. 5a). Connecting the remaining population, however, is
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Fig. 5. Mean interhousehold distance (MID) (a) and marginal distance (b) for each of the four Millennium Villages sites.

Table 2
Comparison of statistics for the four sites.

Site Maximum

possible

MID(100) (m)

Actual

MID(100)

(m)

Density

(structures/km2)

Homogeneity

index

Mbola 313 99.7 11.7 .32

Potou 218 54.3 18.8 .22

Ruhiira 134 56.9 64.3 .42

Tiby 215 32.7 25.0 .15

The ‘‘Maximum Possible MID(10 0)’’ is the maximum possible mean interhouse-

hold distance for a hexagonal distribution of points of the given density.
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expensive. Considering the marginal distance curve, it is apparent
that once these dense areas are connected (about 10% of the
population), the next 70% of the population (from 10% to 80%
penetration) can be connected with roughly constant marginal
cost. The marginal distance does declines somewhat between 45%
and 80% penetration, as the relatively dense settlements along
roads in the south-east and eastern part of the image are
connected to the network. However, connecting the last 20% of
the population is relatively expensive (best observed in the
marginal cost curves of Fig. 5b) due to the sparse arrangement
of the remaining structures. This can be seen in the significant rise
in the marginal distance curve for Mbola after about 80%
penetration. The distribution of segments in the MST (Fig. 6a) is
characteristic of a site that is sparsely and homogeneously
populated with some dominant clusters. The connections be-
tween these clusters contribute to the 30 km of network length
made up of segments between 450 and 1505 m.
4.2. Potou, Senegal

Potou (with the largest town nearby being Louga), Senegal is
sparsely populated, with two nucleated areas; one in the south
and another in the northwest along the coast. The remaining
coastal area is uniformly, though sparsely, populated. Small
outlying clusters line several rural roads running north-south
through the area. Network costs in Potou are dominated, however,
by the areas outlying the two main population centers. The MID
rises slowly as the largest population center (in the south of the
image) is connected to the grid (Fig. 5a). After 20% penetration, the
MID begins to rise more quickly as the outskirts of the main
cluster are connected to the grid. After 60% penetration, the
network begins to reach nucleated areas along the coast; this is
reflected in the drop in the marginal distance plot. There is a steep
rise in marginal distance as the (sparsely distributed) last 20% of
the structures join the network. The Potou MST segment
distribution in Fig. 6b has two peaks, one for short segments
and one for long segments, characteristic of a nucleated settle-
ment pattern surrounded by sparsely populated outlying areas;
however, the peaks are not as distinct at the short end as in Fig. 6d
for Tiby where the nucleation is strong.

4.3. Ruhiira, Uganda

Ruhiira (with the largest city nearby being Mbarara), Uganda is
far more densely populated than the other sites considered here.
The road network and extreme topography in the area gives some
structure to the population distribution; however, Ruhiira clearly
has the least clustering of the four distributions shown here. The
lack of clustering leads to a situation where after 5% penetration,
the MID is essentially the same, as also seen in the flat marginal
distance curve. In considering Ruhiira in comparison to the other
sites, the differences in scale must be remembered; Ruhiira has
6436 structures compared to only 2496 in Tiby, the next largest
site. There is no significant jump in the marginal distance even as
the last 20% of the households are connected (Fig. 5b). The near
uniform population distribution in Ruhiira is evident in the
distribution of MST segment lengths (Fig. 6c) with nearly all of the
network length composed of segments between 25 and 150 m.
The majority of the segments are concentrated around the mean,
with very few segments of the MST longer than 100 m. The result
of this pattern is nearly flat curves for both mean and marginal
cost, with the mean cost quickly reaching a stable value of around
40 m, and then slowly and monotonically rising to 60 m (Fig. 5a).

4.4. Tiby, Mali

The population of Tiby (near the city of Segou), Mali is split
into several nucleated clusters, with few outliers. The ease of
connecting these dense, nucleated clusters allows connection of
the entire population with an MID of only 32.7 m. However, the
large separation between population centers in Tiby leads to
‘‘jumps’’ in the marginal distance (as seen at 30%, 50%, and 75%
penetration in Fig. 5b) as connections are made between clusters.
Fig. 6d shows that the nearly half of the total network length
consists of very short segments, with the other half made up of a
few long segments, up to 2500 m in length, connecting the
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Fig. 6. Comparison of the dominant segment lengths at the four sites: (a) Mbola, (b) Potou, (c) Ruhiira, and (d) Tiby. The height of each bar is the sum of the lengths of all

segments contained within that bin. The final bin includes all segments longer than 425 m, with the longest segment in the network indicated to the far right of the x-axis,

next to the ‘‘o’’sign.
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nucleated settlements. For an electricity grid, such a distribution
would imply that a fewer number of transformers would be
needed for a given population (compared to a distribution such as
that shown in Fig. 6c for Ruhiira); as each transformer can serve
multiple demand points with short low-voltage segments.
5. Discussion

We first highlight the impact of several characteristic settle-
ment patterns on infrastructure costs by considering a simplified
(artificial) dataset (Section 5.1). Following, we discuss the general
performance of the composite Prim’s algorithm and homogeneity
index, and issues of importance to planners considering the usage
of these algorithms (Section 5.2). To gauge the performance of the
CPA, we then compare it to an existing algorithm (Section 5.3) and
present an alternative measure of dispersion, the micro density
variation index (MDVI) in Section 5.4 to corroborate the results of
the homogeneity index discussed previously.

5.1. Characteristic settlement patterns

Our observations from the Millennium Villages sites suggest
several characteristic settlement types that can lead to particular
cost curves. However, the complexity and noise in the Millennium
Villages data complicates understanding the relationship between
spatial pattern, and network cost. To isolate the impacts of
settlement pattern on infrastructure costs, we consider here a set
of artificial patterns. The hypothetical patterns in Fig. 7(a–f) all
have the same total number of structures (400), and identical
spatial extents, varying only in the spatial arrangement of the
structures.

Pattern a is a sparse but uniform grid as might approximate a
highly organized area. Pattern b shows a sparse but random
distribution of points, as might be found in a flat rural area with
few roads organizing the population. Patterns c and d depict a
nucleated population with several clusters, with the clusters in d
having a higher density than in c. Similarly, patterns e and f
compare two highly nucleated settlements, in this case each with
a single nucleus, of varying density.

Comparing the MIDs (Fig. 8) for patterns a and b as penetration
rate varies, we see that the degree of ‘‘spatial randomness’’, or
departure from a uniformly gridded layout, decreases the MID at all
penetration rates. This makes intuitive sense because as the
population gets closer to a gridded layout (pattern a), the
MID(100%) approaches Rmax (as discussed in Section 3.3). Patterns
c and d isolate the impact of multiple nucleation centers on MID:
the long connections between dense population nuclei lead
to ‘‘jumps’’ in the MID (as is also seen in Tiby). The increased
density of nucleation in pattern d (vs. c) amplifies this effect.
Patterns e and f show the impact of nucleation at a single site,
with varying density. The MID curve for these sites fairly quickly
reaches a stable value, with the denser site (f) having a lower
MID(100%).



ARTICLE IN PRESS

Fig. 7. A set of hypothetical structure distributions. Each dot represents a single structure. Each image has 400 structures in total.
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5.2. General discussion

The most useful on-the-ground information that a network
planner would need to carry out preliminary assessments is the
mean interhousehold distance. The results for four different rural
areas in East and West Africa show HI values ranging from .15 to .42.
Settlement patterns determine these differences, with the larger HI
of .42 coming from a near homogeneously distributed settlement
and the lower figure of 15 from a more nucleated settlement.

As planners consider the possibilities for rural electrification,
the next question is the relationship between network expansion
cost and penetration rate. The usual assumption is that marginal
costs will increase dramatically as the last few households are
connected to the network. Indeed, this is generally observed in our
datasets, with the effect being minimal when the settlement
pattern is nearly homogeneous (as in Ruhiira). However, even
though this effect is seen for the majority of the sites, differences
in HI and in the variation of cost with penetration rate between
sites are striking. Finally, there is a concern that optimization of
local networks by excluding high-cost households from the grid
will greatly increase the later costs of grid expansion; we provide
a method of addressing this issue with the CPA.

The sites we have examined, though sparsely populated, tend
towards distributions of two types: non-nucleated or uniformly
populated (as in Ruhiira and Mbola) or with nucleated population
centers arranged into several dense clusters with a small number
of outliers (as in Potou and Tiby). In areas such as Ruhiira,
Uganda, the lack of significant structure in the spatial layout
of the population leads to the MID quickly approaching the
MID(100%)—penetration rate essentially becomes irrelevant ex-
cept from a total cost perspective. As seen in the distribution of
segments, nearly all of the network length consists of segments
that are 25–150 m, but with a peak for segment lengths that are
between 50 and 75 m. An electricity grid in Ruhiira would need
more transformers per-unit population, due to the lack of
Table 3
Comparison of MID (in meters) and total cost (in parentheses) for the four sites at sev

Site 10% Penetration 25% Penetration 50% Penetra

Mbola 41.4 (5013) 74.6 (22,155) 90.9 (53,703

Potou 8.3 (1505) 17.4 (7852) 46.1 (41,604

Ruhiira 37.7 (25,068) 42.1 (69,787) 49.8 (164,26

Tiby 14.8 (3743) 19.3 (12,162) 24.6 (30,858

Differences in structure density account for the variation in total cost.

Fig. 8. Mean interhousehold distance (MID) for each of the six hypothetical

settlement patterns depicted in Fig. 7.
nucleation, as each transformer would serve a relatively small
number of households. The high HI in Ruhiira, .42 is consistent
with these observations.

Areas with significant clustering, as in Tiby, Mali, with an HI of
.15, are a trivial case at the other end of the spectrum. Small,
nucleated clusters lend themselves to be better served by local
‘‘mini-grids’’ or through networks where one transformer can
serve a number of households. This type of distribution also
shows little structure in the marginal cost profile, except as
relatively long segments are added to the network to connect
clusters. The distribution of MST segment lengths in a highly
nucleated site like Tiby (when compared to another site) shows
more weight in the shorter range, due to the short distances
between clustered households, little weight in the midrange
(100–450 m) and a relatively large fraction of length in longer
distance cable runs connecting the individual clusters.

The MST segment distribution of Mbola, Tanzania (HI of .32) is
closer to that of Ruhiira, but with long segments that separate the
little clustering that exists there, and with more weight in the
midrange. On the other hand Potou, Senegal (HI of .22) is more
similar to Tiby, showing more nucleation than Mbola, though
without as tight a clustering as in Tiby. These observations are
consistent with the differences in MID at all penetration rates
among Mbola and Potou, although their overall densities are
similar: 11.7 and 18.8 structures/km2, respectively.

It is important to note that the sites discussed above vary
greatly in terms of the total number of structures per site. As seen
in Table 3, although Potou and Ruhiira have similar MIDs for 50%
penetration, 46.1 and 49.8 m, respectively, the total cost of
connecting 50% of the population in Ruhiira is about five times
as expensive as connecting 50% of the population in Potou, due to
the larger total number of structures in Ruhiira. Depending on the
objectives and economics of a project, total cost, rather than MID,
could be the most important metric to consider. Total cost is also
likely to be important for planning when network expansion is
considered.

As the CPA is based on Prim’s algorithm, it is important to
recognize that it necessarily builds subgraphs of the MST.
Therefore, any network produced by the CPA can be expanded to
100% penetration with no penalty. In other words, the cost of
initially building a network with 100% coverage is equal to the
cost of building a network (calculated with the CPA) with less than
100% coverage, plus the cost of expanding it to full coverage. The
same is not necessarily true for expansion of a minimum cost
network spanning a subset of the population to another network
also providing less than full coverage—the optimal network for
20% penetration may not be a subgraph of the optimal network for
40% penetration, as the two may start from different root
structures. For example, a planner interested in constructing a
network spanning only 20% of the grid and who is planning for
later expansion up to 40% connectivity could minimize their
expansion costs by estimating with the CPA the optimal network
for 40% connectivity, and building initially building a network that
is a subgraph of this network. A planner interested in minimizing
eral different penetration rates.

tion 75% Penetration 100% Penetration Total number of

structures

) 90.2 (79,770) 99.7 (116,225) 1174

) 40.8 (55,229) 54.3 (95,925) 1796

8) 52.8 (260,672) 56.9 (364,859) 6560

) 28.6 (53,639) 32.7 (81,360) 2494
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initial costs could instead estimate the best network for 20%
connectivity, and choose to construct this network initially, while
calculating the penalty of doing so by comparing it to the best
network for 40% connectivity. Though there is no analytical
guarantee for the CPA, it appears to handle these cases reasonably
well, based on the observed empirical results.

The CPA performs well enough to be used on reasonably sized
datasets; we have experimented with calculations on a site having
in excess of 17,000 structures. However, the computational
complexity of the algorithm necessitates limiting the potential
starting points considered by the algorithm when the number of
points in the dataset becomes large. Another possibility for
preliminary assessments is to use a small sample of the dataset as
an approximation to the whole population while calculating the
MID. This technique can only be used with a dataset where
the population is nearly Poisson distributed (or homogenous).
Ruhiira is an example of one site nearing spatial homogeneity.
Sites with a large degree of nucleation would be difficult to
segment in this fashion.

Although a planner might give preference to the electrification
of certain sites, such as health centers, markets, and educational
areas, over individual households, the algorithm discussed above
weights all buildings evenly. Other important factors in consider-
ing the cost-effectiveness of electrifying a site could include
proximity to existing infrastructure, and the topography of the
area. These factors could easily be added to the analysis by
differentially weighting points according to their relative demand
or perceived importance (health centers weighted more heavily
than households, for example)—the algorithm itself does not need
to be modified to take this additional information into account. We
have chosen to consider all structures equally here as acquisition
of these weighting factors for the sites we mention would be
difficult, due to their derivation from remotely sensed imagery. A
more detailed dataset; however, would allow prioritization of
structures for electrification based on their perceived importance.

Extension of the composite Prim’s approach using weighting
functions to take account of existing infrastructure and population
would allow more accurate cost estimates (given the availability of
data), as well as consideration of the economic development
potential of a region, and the expected non-linear relationship
between economic development and population density. Different
structures could be weighted differentially to both reflect a planners
preferences for electrification of certain areas, as well as to
incorporate the potential for economic development. Prior research
suggests that areas with higher population density tend to develop
faster than areas that are sparsely populated, due to the increased
size of markets, as well as returns to scale in production (World
Bank, 2008). Planners could take advantage of this tendency, with
the CPA, by incorporating a non-linear factor weighting areas with
higher population densities. Areas with higher population density,
and therefore higher economic development potential, would be
weighted more heavily than sparse areas.

Not mentioned here are the political issues potentially
associated with grid planning. Political, as well as economic,
considerations would likely play a large role in determining, for
example, the network starting point, or a potential weighting
scheme. Haanyika (2008) relate the problem in Kenya of a poorly
regulated energy market leading to utilities ‘‘cherry-picking’’ the
most attractive consumers to supply—our framework for choos-
ing a network would clearly be difficult to implement in this case.
If broader-scale electrification is a policy objective, these con-
siderations must be taken into account, and incentive structures
and pricing planned accordingly.

We also do not consider here an example of a grid expansion in
an area with a pre-existing grid. The areas we have considered in
rural Africa generally lack the pre-existing infrastructure to make
this problem a concern; therefore, our dominant focus here is on
the problem of grid construction with no pre-existing local
electricity infrastructure, and on understanding, in these cases,
the impacts of population structure on infrastructure investment
costs. However, extension of a pre-existing grid is one area where
future work could be carried out. The CPA algorithm should apply
fairly simply to this special case.

Future work is also required to better relate household and
structure densities. Here, we have focused on connecting
‘‘structures’’ to the grid: individual buildings visible from
remote-sensing imagery. However, it is important not to conflate
structures and households. Although households are the common
unit of analysis for other areas of assessment, such as the
provision of health services, we have avoided the conversion of
data expressed on a per-structure basis to representation based on
households due to the limited data available on household density
versus structure density in the areas we consider here. Our
preliminary work has noted significant differences between sites
in the number of structures per household. Improving the quality
of this information is important for policymakers to be able to
better gauge the impact of infrastructure investments. Were this
data available, and constant across a site, a simple scaling factor
could be used to express mean, marginal, and total costs on a per-
household basis (or on a per-person basis, if total population is
also accurately known). Future work could also consider possibi-
lities for merging structure-level point data into clusters, so as to
approximate household locations using structure-level data based
on remotely sensed information.

5.3. Composite Prim’s algorithm vs. an existing algorithm

In this paper, we have proposed the composite Prim’s
algorithm for the partial electrification algorithm. In the computer
science literature, an abstraction of this problem is known as the
k-MST problem, and it has been well-studied. Chudak et al. (2001)
have taken a technically rigorous approach to this problem, and
proposed a heuristic algorithm that produces a network whose
total length is guaranteed to be at most twice the total length of
the optimum network. Their approach is based on the fact that the
Lagrangian version of the k-MST problem is a well-studied Prize
Collecting Steiner Tree problem, for which a similar guarantee has
been developed using the so-called primal-dual algorithm (Goe-
mans and Williamson, 1995). The primal-dual algorithm searches
for the best possible solution by keeping track of both the feasible
solution and its shadow prices related to the constraints. While
the algorithm of Chudak et al. (2001) has a theoretically appealing
property, its implementation is much more complex than that of
the CPA. We have implemented both algorithms, and find that
both have similar performances. As seen in Fig. 9, the mean cost
curves obtained from these two algorithms match closely.

5.4. Homogeneity index and micro density variation index

In this paper, we have adopted the homogeneity index, defined
in Section 3.3, as the measure for the dispersion of structures
within each region. To assess the validity of this measure, we
propose another indicator called the micro density variation
index, which is shown to be consistent with the HI. MDVI is
computed as follows: (i) start with a square tile that is relatively
small compared to the area of the region under study, (ii) place
these tiles throughout the region of interest such that the number
of squares is sufficiently large, and (iii) count the number of
structures in each square. Then, we compute the sample
coefficient of variation on the number of structures, and denote
it by the MDVI. If the structures are uniformly distributed in the



ARTICLE IN PRESS

Fig. 10. Comparison of the homogeneity index (HI) with the micro density

variation index (MDVI).

Fig. 9. Comparison of results of the composite Prim’s algorithm (thick lines) with

those obtained from the k-MST algorithm proposed by Chudak et al. (2001) (thin

lines).
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region, then each tile would contain exactly the same number of
structures, resulting in an MDVI of zero (or very close to zero);
otherwise, if the structures are highly clustered, the correspond-
ing MDVI would be high. For the placement of tiles in the region,
we use a systematic grid approach where the region is subdivided
using a grid with spacing that is one-quarter of the edge length of
a tile, and consider all possible tiles that are aligned with the grid
and completely contained in the regions. (Due to the choice of the
grid spacing, we permit the overlapping of squares.) For example,
for the 10 km�10 km region, if we use tiles of size 0.4 km�0.4
km, then it can be shown that there are 9409 distinct tiles, from
which the numbers of structures can be counted. We recommend
that the size of the tiles be such that a reasonable number of tiles
can cover the entire region, and a sufficiently large number of tiles
can be placed without overlapping too many times.

In Fig. 10, we have computed the MDVI values using tiles of
sizes 0.2 km�0.2 km, 0.4 km�0.4 km, and 0.6 km�0.6 km, and
plotted them against the HI. We observe that the MDVI is
negatively related to HI, a property that is expected from the
definition of MDVI. This observation suggests that both indices are
good measures of the dispersion of structures within each region.
Note that the evaluation of MDVI is computationally easier as it
does not require one to compute the minimum spanning tree;
hence it is plausible that the MDVI can be used to obtain an
approximation of the value of the HI using a regression approach.
This allows one to have a simple technique to rapidly assess the
length of wire that is needed to connect all households in a region.
One would first compute the MDVI for the region and then
consider Fig. 10 to determine an approximation for HI. With this
estimate of HI and the maximum possible MID(100%), one can
infer an estimate of the MID(100%) value as without computing
the minimum spanning tree.
6. Conclusions

The four sites described here are typical of the settlement
patterns encountered by infrastructure planners in rural Sub-
Saharan Africa. The results indicate the inadequacy of existing
proxies such as population density, and of the importance of
considering the cost of electrification at varying penetration rates:
the presumption that cost per connection will monotonically
increase with penetration rate is incorrect. Future analyses at the
national and regional scale can utilize this knowledge by
optimizing local penetration rates so as to ensure cost-effective-
ness of the entire grid; thereby ensuring full penetration in those
areas where it is optimal, while reducing unnecessary costs in
areas where it is not. Although the metric we offer, the
homogeneity index, cannot yet fully capture these subtleties, we
have begun to develop a means to allow better comparison among
sites. We also find that some population settlement patterns offer
the potential for savings (on a per-unit basis) in upfront
investments through an initial roll-out that covers part of the
population; later expansion of these partially spanning networks
can be undertaken at little additional cost in the long-term.

The model described herein need not be limited solely to the
analysis of electricity infrastructure. Other problems in rural
infrastructure design, such as water and communication networks
could benefit from a similar modeling approach. Sitting of
new health care and educational facilities could also benefit
from an approach aimed at maximizing penetration and cost-
effectiveness.
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