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a b s t r a c t

For many isolated regions in the developing world micro-grids which combine photovoltaic electricity
generation and battery storage may represent the most reliable and least expensive form of energy
service. Due to climate induced solar resource variations, achieving high reliability levels necessitates
excess generation and storage capacity which can significantly increase the end consumer cost of energy.
Due to severe financial limitations, many consumers in the developing world may prefer cost versus
reliability trade-offs, as long as their basic energy needs are met. Defining reliability as the percent of
electricity demand a grid can deliver, we utilize a time series energy balance algorithm at hourly reso-
lution to create cost versus reliability curves of micro-grid performance. We then propose a micro-grid
sizing strategy which enables designers with knowledge of local energy needs to determine the
acceptability of potential micro-grids. Our strategy relies on visualizing simulation data at increasing
levels of temporal resolution to determine where energy shortfalls occur and if they interfere with high
priority energy demand. A case study is presented which utilizes the proposed methods. Results suggest
that the methodology has the potential to reduce the cost of service while maintaining acceptable
consumer reliability.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

As the size of electricity distribution networks is decreased, so is
the diversity of demand sources and the diversity of generation.
Thus, the smaller an electricity distribution grid, the more vulner-
able it becomes to fluctuations in demand and electricity genera-
tion. As a result, small standalone micro-grids must rely more
heavily on energy storage in order to buffer variability and meet
demand. The inclusion of storage capacity greatly increases the
capital cost of micro-grids. Thus, it is vital to appropriately size
electricity storage capacity.

The issue of appropriately sizing small-scale micro-grid in-
stallations is highly pertinent to the electrification of rural locations
within the developing world. This article is focused specifically on
the sizing of micro-grids with solar photovoltaic, PV, electricity
generation and battery storage. Within the developing world,
proper maintenance and repair of fossil fuel engine generators can
115@columbia.edu (M. Lee).
be difficult. Likewise, gasoline and diesel supply chains can be
expensive and unreliable. As a result, depending on the availability
of other renewable resources, PV micro-grids may offer the least
expensive and most reliable form of energy service [1,2]. PV infra-
structure needs only minimal maintenance. Maintenance consists
primarily of valve-regulated lead-acid battery replacement which
must be completed every two to five years. Another advantage of
small-scale photovoltaic technology is its modularity. As long as
additional hardware constraints are satisfied, PV generation and
battery storage capacity can be increased to meet the growing
needs of first time electricity customers [3].

Recognizing the importance of proper micro-grid sizing,
numerous studies have been conducted with the goal of designing
stand-alone systems for a specified reliability, which is usually near
100%. These studies often rely upon a single or multi-year time
series of solar data in order to simulate micro-grid performance.
Researchers [4e6] used time series simulations to develop curves
of PV electricity generation versus battery storage for a desired
reliability. As illustrated by Hadj Arab et al. [5], once the per unit
cost of PV and battery installation are known, it is then possible to
determine the lowest cost generation and storage combination for
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Input: solar resource, energy demand, and component cost data

Compute cost versus reliability curve of annual performance
for potential micro-grids

Choose a point on cost v. reliability curve 
 on which to conduct temporal analysis

Compute reliability during each month

Pick the lowest reliability month(s) and analyze 
at a sub-daily time scale

If performance and cost are acceptable conclude design, 
else continue to iterate

Fig. 1. Overview of design procedure for stand-alone micro-grid systems.
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a fixed reliability. They stress the importance of their work by
illustrating that the shape of an iso-reliability curve is dependent
upon a location’s weather profile, the relative cost of PV and battery
installations, and the desired micro-grid reliability. Moreover, they
stress that these influences may be lost while using simpler
methods.

Within the developed world, micro-grid consumers can afford
and expect 100% system reliability. Thus, the role of micro-grid
designers is to choose the lowest cost PV and battery combina-
tion on an iso-reliability curve for 100% up-time. Given stringent
financial limitations, consumers in rural regions in the developing
world are unwilling and unable to pay for unnecessary surplus
capacity. Moreover, cost versus reliability trade-offs can be made,
as long as, the micro-grid satisfies consumers’ basic energy re-
quirements [7]. In such a case, micro-grid designers should
determine the minimum cost solution for a series of reliabilities.
The designers should then choose a design from the locus of
minimum cost solutions which meets the consumers’ basic reli-
ability requirements and fits within the consumers’ budget con-
straints. Although not exhaustive, some research has been
conducted into populating a list of micro-grids which provide a
range of reliabilities, and observing how system reliability affects
the cost of delivered electricity. Researchers [5,8,9] touched upon
the issue of cost versus reliability trade-offs for stand-alonemicro-
grid designs. The work of Kanase-Patil et al. [9] observes how the
cost of delivered energy and the composition of hybrid renewable
energy systems changes as a function of reliability. Similarly,
Wissem et al. [8] observe how the reliability of autonomous PV
systems influences the cost per kWh of electricity. Hadj Arab et al.
[5] determine the least expensive PV to battery ratio for several
system reliabilities.

Existing research illustrates the feasibility of calculating cost
versus reliability relationships for potential micro-grid designs.
However, this research does not provide a systematic approach for
understanding how increasing or decreasing micro-grid reliability
affects the consumer experience of delivered electricity. To address
the shortfall in existing literature, we propose a methodology which
aids a systemplanner in selecting a grid reliability that iswell aligned
with the energy usage patterns and budget constraints of consumers.
Ourmethodology requires the production of a locus of PV generation
and battery storage combinations, each of which is optimized for a
particular reliability. It then follows a step-by-step decision-making
processwhichenables the systemplanner to select thePVandbattery
combination that best fits the needs of consumers.

The goal of our step-by-step procedure is to determine when
energy shortfalls are concentrated, and then to observe how these
shortfalls affect local energy consumption patterns. When
analyzing a potential micro-grid design, we begin our temporal
analysis by quantifying its reliability for each month of the year.
This allows us to observe seasonal trends in micro-grid perfor-
mance. After identifying the month or months of principal impor-
tance, or lowest reliability, we isolate those periods and analyze
their performance using sub-daily resolution. Depending on the
accuracy of the input parameters, the results should be quantita-
tively and qualitatively representative of trends in micro-grid
performance.

Within Section 2, we present a detailed description of our
procedure for designing standalone PV micro-grids. This section
introduces several figures. When discussed within Section 2, the
specific data within the figures and the implications on the design
of a particular micro-grid are of secondary importance. Instead,
Section 2 discusses how these types of figures can be used in
general terms to facilitate our micro-grid sizing strategy. Section
3: case study is included as an illustrative example of how to use
our proposed methodology to develop amicro-grid design.Within
our illustrative example, we size the battery bank and PV module
for a micro-grid in a village in Segou, Mali. However, balance of
system components, BOS, is not included because their size and
cost are not strongly correlated to reliability. Within Section 3, the
figures from Section 2 are reintroduced. Instead of being discussed
in general terms as in Section 2, Section 3 highlights the specific
data contained within the figures in order to illustrate how they
informed design decisions for a particular micro-grid. In the dis-
cussion section of this article, we summarize the lessons learned
from our work. We also explain how similar methodologies may
be employed to design other micro-grids for the developing world.
In Section 5, we summarize our findings and the applicability of
our research. We also remind the reader of important consider-
ations that must be made when using the proposed methodology.
In Appendix A.1, we describe the algorithm used in order to
simulate micro-grid behavior over a year at hourly resolution.
Appendix A.1 also describes the metric we use to quantify grid
reliability. Appendix A.2 describes an optimization tool we
developed in order to select the lowest cost PV generation and
battery storage combination needed to achieve a desired reli-
ability. In Appendix B.1, we describe the origins of the weather and
electricity demand data that was used in order to conduct our
analysis, and in Appendix B.2 we describe how we arrived at the
cost estimates used in the paper.
2. Methodology

Within this section, we describe our methodology of identi-
fying the lowest cost system which satisfies consumer energy
needs. Our methodology may use real or forecasted customer
demand and weather data and price estimates for photovoltaic
panels and storage. Unlike previous research, our micro-grid
sizing strategy is concentrated on understanding the consumer
experience of future micro-grid installations. In this methodology,
we adjust the system reliability to minimize cost while simulta-
neously observing the times when the system is unable to meet
demand. We begin our temporal analysis by quantifying the
micro-grid reliability for each month of the year. This allows us to
observe seasonal trends in reliability. After identifying the month
or months of principal importance, or lowest reliability, we isolate
those periods and analyze their performance using sub-daily
resolution. Although subjective, this iterative procedure allows a
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Fig. 2. Cost in USD/kWh versus ESP of micro-grid with freezer base load. In the un-
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USD/Wh, respectively. The simulation uses the insolation profile from Segou, Mali.
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of PV generation and battery storage which achieves that reliability. Thus, PV gener-
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our optimization strategy refer to Appendix A.2.
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system designer with knowledge of local demands to design a
lower cost system without the complexity of backup fossil fuel
based generation. A process diagram summarizing our iterative
procedure is illustrated as Fig. 1.

The first step in our design procedure is to input insolation and
demand data. Several strategies have been employed to estimate
the electricity demand of new micro-grid installations for the
developing world. Camblong et al. [10] and Alzola et al. [11] used
extensive surveying to estimate the magnitude of electricity de-
mand on a per load consuming device basis. The surveys also
included time of day information about electricity usage which the
authors employed to create a daily power profile with hourly res-
olution. Nfah et al. [12] estimated the electricity demand of future
installations by using historical data of grid connected households
with similar electricity consumption behavior. Tools are also
available which assist in estimating solar resource data. Given the
scarcity of ground-based solar resource data, these tools have been
developed to convert geostationary imagery into site-time specific
solar data. For instance, Mines ParisTech and the Center for Energy
and Processes utilized Meteosat geostationary satellite imaging to
create insolation data sets for all of Africa and Western Europe. For
most locations, from 2005 to the present, these data sets have a
spatial resolution finer than 10 km and a temporal solution finer
than 1 h [13]. Similarly, the NASA Langley Research Center has
completed a worldwide solar energy data set using satellite imag-
ery. The data set embodies 20 years of data with a 100-km spatial
resolution and a daily temporal resolution [14]. NASA has also used
this data to compute the average daily insolation for each month at
each location. As a result, this data may easily be imported into a
tool such as HOMER in order to create synthetic data sets at sub-
daily resolution [15].

After energy demand and insolation data inputs have been
specified, the next step in our design procedure is to create a cost
versus reliability curve. Such a curve allows the designer to un-
derstand the marginal cost of added micro-grid reliability. An
example of one such curve is illustrated as Fig. 2. The metric we
use in order to express system reliability is called energy shortfall
probability, ESP. First introduced by Wissem et al. [8], ESP is equal
to the annual consumer energy demand a micro-grid could not
supply divided by the annual consumer energy demand.1 We
compute ESP using an energy balance model with an hourly time
step. Although a pre-existing and more robust algorithm could
have been employed, we decided to develop our own micro-grid
modeling tool so that we would have complete access and un-
derstanding of the source code. Within Appendix A.1, we provide
further explanation of our energy balance algorithm. Within
Appendix A.1, we also provide our motivation for using ESP. For
curves like that illustrated in Fig. 2, the cost at each reliability is
that of the cost optimized PV generation and battery storage
combination need to achieve that reliability. The algorithm we
used to determine the PV and battery combinations is further
discussed in Appendix A.2.

As the next step of our micro-grid selection strategy, we plot the
ESP for each month. This allows micro-grid designers to observe
seasonal variations in reliability and identify portions of the year
that may be of concern. They are then able to strategically target
these areas with a finer level temporal resolution. Seasonal varia-
tions in reliability may be the result of variations in demand or solar
resource. Concern over a temporal region may result from a peak in
ESP, or it may also result from seasons which have high consumer
demand priority. If it is found that seasonal reliability and demand
priority are relatively constant, it is up to the discretion of the
micro-grid designers to conduct fine resolution temporal analysis
on the entire year or to sample certain months. An example of one
such monthly ESP plot is illustrated as Fig. 3. This figure includes
the monthly ESPs of three different micro-grid alternatives for a
single location.

Once we have identified the seasonal areas of concern, we are
then able to observe them on a sub-daily time frame. This allows us
to qualitatively and quantitatively understand micro-grid perfor-
mance from a consumer perspective. For our sub-daily analysis we
used hourly increments; however, larger, or smaller, increments
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can be used depending on data availability. We are able to observe
trends in time of day reliability by plotting it for a month or season
of interest. An example of one such time of day reliability plot, for
three different micro-grid designs, is illustrated as Fig. 4. Each bar in
Fig. 4 represents the combined reliability for the specified micro-
grid at a time of day over the course of the month. Plots like
Fig. 4, allowmicro-grid designers to observe how the probability of
energy shortfall changes throughout an average day. From these
trends in time of day reliability, micro-grid designers observe how
varying reliability may impact sub-daily patterns in peak, or high
priority, electricity demand.

We are able to further assess with sub-daily resolution the
consumer acceptability of potential micro-grid designs by creating
energy shortfall, ES, maps. These maps allow us to qualitatively
analyze how energy shortfalls are distributed across days and
weeks. ES is the amount of demand, inWh, that the micro-grid was
unable to supply. Examples of ES maps for one month are illus-
trated within Fig. 5. Each cell within the ES maps corresponds to 1 h
of micro-grid performance, and the color of the cell corresponds to
the magnitude of energy shortfall. Using ES maps to understand
inter-day reliability can answer questions such as, “is a low time of
day reliability the result of several small energy shortfalls, or a
handful of complete blackouts?” In addition, these figures, com-
binedwith an understanding of relevant weather and demand data,
allow micro-grid designers to assess whether energy shortfalls are
supply or demand driven. For example, energy shortfalls randomly
spaced across days would suggest weather driven outages;
whereas, energy shortfalls spaced at seven-day intervals would
suggest demand driven outages.

The primary purpose of our micro-grid design strategy is to
isolate periods when a micro-grid is under the most stress and
determine if its performance is acceptable. One way to determine
the acceptability of a micro-grid design is through the use of clearly
defined thresholds. For example, depending on the devices con-
nected to a grid, such a telecom service, water pump, or refriger-
ator, there may be a certain number of hours per day or per week
that a grid must be operational. If micro-grid performance meets
acceptability requirements while under the most stress, it will be
acceptable during the rest of year; an exception being that seasonal
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between 12:00 and 13:00 is marked at 12:00. The underlying model relies on the
weather profile of Segou, Mali. The PV and battery composition of each micro-grid
design is listed in Table 1.
variations in micro-grid usage can necessitate time of year varia-
tions in acceptable system reliability. Regardless, our procedure
allows micro-grid designers to also analyze the performance of
months with the highest priority demand.
3. Case study: Segou, Mali

This section is intended as an illustrative example. The meth-
odology introduced in the previous section is utilized in order to
size a micro-grid for a village outside of Segou, Mali. There is
currently a micro-grid on the site. From consumer feedback, the
micro-grid is deemed to have an unacceptable reliability. According
to our model, the micro-grid has an ESP of 0.125. In order to facil-
itate the design process, and motivate specific micro-grid design
decisions, the figures from Section 2 are reintroduced.
3.1. Input parameters

The following subsection describes the input parameters of our
model. The primary input types are as follows:

� an 8760 element vector of hourly available insolation for one
year,

� an 8760 element vector of hourly net consumer demand for one
year,

� the geographic location and the orientation of the collector, and
� cost parameters which determine the relative and total cost of
PV generation and battery storage.

Insolation data illustrates significant seasonal variations in solar
resource availability. These variations are primarily driven by
weather patterns and not by changes in clear sky solar resource.
Segou, Mali is located at 13�270 000N, 6.13�160 000W. Being between
the Tropic of Capricorn and the Tropic of Cancer, this location has
little variation in seasonal clear sky solar resource availability; the
hours of daylight for the summer and winter solstices are 12 h,
55 min and 11 h, 20 min, respectively. Although the clear sky
irradiance is relatively constant throughout the year, irradiance at
ground level is not. Segou’s weather is characterized by a rainy
season which lasts from June until September, and a dry season
throughout the rest of the year.

From historical demand data, and knowledge of the villagers’
energy usages, we are aware that amajority of electricity demand is
used to operate a 250 L freezer. Due to the warm climate, and being
frequently loaded beyond capacity, the freezer operates nearly 24 h
a day with minimal on/off cycling. Ice bricks and frozen drinks
produced by the freezer are sold to neighboring villages. From the
one week of available data, the circuit with the freezer drew on
average 153 Wh/h. For this same circuit, during a typical day, en-
ergy consumption peaked in the early evening at approximately
210 Wh/h. In addition to powering the freezer, the micro-grid
serves approximately 20 households. Each household is equipped
with two 5 W LED light bulbs and a two plug 230 VAC outlet. The
outlets are used primarily for cell phone charging. A few house-
holds may also have larger electronics, such as a television or radio.
All households are individually metered, and are charged on a per
watt hour basis. The combined energy demand of the non-
refrigeration consumer usage, refrigeration, and metering loads
averages 270Wh/h with peaks in the early evening around
400Wh/h. The average diurnal day of the combined energy con-
sumption data used in our analysis is illustrated in Fig. 4. The en-
ergy consumption includes non-refrigeration consumer usage,
refrigeration, and metering loads. Fig. A1 part A illustrates a one
week time series of the net energy demand of the micro-grid.
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When conducting our financial analysis, we estimated the
annual cost of PV capacity to be 0.1762 USD/W. We also estimated
the annual cost of battery capacity to be 0.0804 USD/Wh. For a
more detailed explanation of how the weather, demand, and eco-
nomic parameters were generated, please refer to Appendix B.

3.2. Case study procedure and results

Sizing the micro-grid for Segou, Mali, required several iterations
of steps three through six of the design procedure illustrated in
Fig. 1. Each iterations generated a unique micro-grid configuration.
The ESP, PV capacity, battery capacity, and cost per kWh of select
iterations are printed in Table 1.

When sizing the micro-grid for the village outside of Segou, we
started by specifying an annual ESP of 0.10. Recognizing the severe
financial limitations on micro-grid design, we wanted to start with
a reliability that was marginally better than the 0.125 ESP of the
current system. After specifying an annual ESP of 0.10, we plotted
the ESP for each operational month. Fig. 3 illustrates that, as ex-
pected from the weather patterns of Segou, the months of July
through September had the lowest reliability. Because it had the
lowest reliability, with an ESP of 0.237, we chose to analyze the
month of August with an hourly resolution.

In order to understand the temporal spacing of energy short-
ages, and how they affect electricity demand, we created Figs. 4 and
5. After analyzing the figures, we concluded that the 0.10 ESP
micro-grid did not offer adequate reliability for either the freezer
base load or the residential demand. We found that micro-grid
performance was insufficient for the residential consumers
because many energy shortages occur during times of significant
residential demand. Given that the freezer base load remains
relatively constant, from Fig. 4, we can see that there is a significant
level of residential electricity demand between 5:00 PM and 12:00
Table 1
Performance, size, and costs characteristics of current and potential micro-grids for
Segou, Mali. The costs of PV and battery capacity were 0.1762 USD/W and 0.0804
USD/Wh, respectively. Note that the ESP and the cost per kWh were estimated by
our model and do not constitute measured reliability or cost data. All PV/battery
combinations, except for that of the current grid, represent the optimal ratio for the
desired ESP.

ESP PV Capacity W Bat capacity Wh Combine cost of PV
and Bat bank USD/kWh

Current grid 0.125 1400 17,820 0.790
0.1 1800 7600 0.434
0.05 2400 8400 0.483
0.03 3200 8400 0.539
0.01 3000 13,800 0.697
0 3300 19,600 0.913
AM, with peak demand occurring between 8:00 PM and 9:00 PM.
Between 5:00 PM and 12:00 AM reliability steadily decreases, with
ESP rising from 0.0549 to 0.290. During the peak demand window,
which occurs between 8:00 PM and 9:00 PM, the ESP of the micro-
grid was 0.1883. The 0.10 ES map within Fig. 5 also illustrates that
the system provides insufficient electricity service to the residential
customers. In particular, we can see that the high ESPs were the
result of regularly occurring energy shortages and not isolated
outages. Fig. 5 indicates that there were nine energy shortfall
events which curtailed demand during the 5:00 PM to 12:00 AM
period. Five of these inhibited electricity consumption during the
hour of peak demand, 8:00 PM to 9:00 PM. We also found that the
micro-grid failed to provide sufficient service for the freezer system
because there were several outages of long duration. We estimate
that any energy shortfalls lasting 5 h or longer would significantly
impact the production of ice and frozen drinks. As Fig. 5 illustrates,
energy shortfalls lasting five or more consecutive hours occurred
on sixteen separate days.

Recognizing that an ESP of 0.10 was insufficient to meet our
consumers’ demand, we iteratively increased system reliability and
observed the temporal characteristics using the Section 2 meth-
odology. An intermediate design was a micro-grid with an annual
ESP of 0.05. Although the performance of the 0.05 ESP micro-grid
was significantly better than that of the 0.10 ESP micro-grid, we
found that its performance was nonetheless unacceptable. Like the
0.10 ESP micro-grid, this design would have a significant negative
impact on residential electricity usage during August. Recognizing
that most residential demand occurs between 5:00 PM and 12:00
AM, Fig. 5 illustrates that there were six instances in which power
outages would inhibit residential electricity supply during that
timeframe. With respect to the freezer operators, we found that
there would be ten days with outages of five consecutive hours or
longer. Subjectively, we determined that ten days of lost revenue
concentrated within a one-month period would be unacceptable to
the freezer operators.

As a result of our iterative design process, we decided upon a
micro-grid with an annual ESP of 0.01. After isolating the lowest
reliability month, and analyzing it with an hourly resolution, we
decided that the micro-grid was acceptable to residential con-
sumers. Fig. 5 indicates that there were only two energy shortages
between 5:00 PM and 12:00 AM, representing two events in which
residential consumption was significantly impacted. We also found
that the 0.01 ESP micro-grid significantly improved freezer opera-
tion, especially when compared to the aforementioned alternatives.
There were only three energy shortfall occurrences which were 5 h
or longer. Furthermore, as indicated in Table 1 we can see that for
ESPs below 0.01, the cost of electricity continues to increase
significantly.
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4. Discussion

The results of the case study illustrate that a combination of
optimization tools and designer discretion can produce a micro-
grid design that is more reliable, and less expensive, than a
micro-grid designed using “rule of thumb” techniques. Moreover,
we were able to come about a design which made an acceptable
and significant cost versus reliability trade off. As indicated in
Table 1, we arrived at a designwith an ESP of 0.01 and a break even
cost of electricity of 0.697 USD/kWh. For a reliability which would
be demanded by an off-grid customer in the developed world, the
cost of generation would be significantly higher. To achieve an ESP
of 0.001, the break even cost of electricity would have been 0.913
USD/kWh. In essence, in order to reduce the micro-grid’s ESP by
0.009, the consumer cost of electricity would have to be increased
by at least 31%.

As previously stated, within the illustrative case study, the cost
of balance of system, BOS, components, such a charge controller, or
an inverter, is not included. Because BOS costs are not a function of
reliability, the primary result of their inclusion would be the up-
ward translation of the cost versus reliability curve in Fig. 2 without
changing its shape. Thus, in absolute terms the cost of adding
reliability will be the same, regardless of whether or not BOS costs
are included.

In our analysis we assumed that the batteries would have a fixed
life of 3 years. This lifespan is a conservative estimate based on our
acquired experience with heavily utilized isolated micro-grids. We
believe that a more advanced model of battery performance would
not significantly impact our findings. Within of the micro-grid
simulations presented, we used the same depth of discharge, 50%,
as well as, the same energy demand and solar radiation time series.
As a result, an improved battery performance model would influ-
ence all micro-grid simulations similarly. Our findings would not
significantly change because our analysis is concerned with relative
differences in the cost of energy for various micro-grid options.

Nonetheless, operational characteristics of a micro-grid can in-
fluence battery life, and, in turn, affect the net present cost and the
leveled cost of energy of a potential solar micro-grid project. As a
result, designers may wish to incorporate modeling of battery
degradation into their analysis when using our micro-grid sizing
strategy to size future systems. Dufo-Lopez et al. describe and
evaluate three types of existing battery lifetime models. These
models are the fixed energy throughput model used in HOMER, the
“rain flow” cycles counting model, and the Schiffer weighted Ah-
throughput model [16]. Additional information on battery life-
time modeling is present in Refs. [17e19].

In writing this article, we narrowed our scope to stand-alone PV
and battery micro-grids, and we chose to demonstrate our meth-
EBðt þ 1Þ ¼
8<
:

EBmax; EBðtÞ þ EPVðtÞ � EdemðtÞ;� EBmax
EBðtÞ þ EPVðtÞ � EdemðtÞ; EBmin � EBðtÞ þ EPVðtÞ � EdemðtÞ;� EBmax

EBmin; EBðtÞ þ EPVðtÞ � EdemðtÞ;� EBmin

(A.3)
odology using one specific example. Nevertheless, we believe that
the combination of optimization tools and pseudo-subjective cost
versus reliability trade-offs can be utilized to design a wide array of
isolated micro-grids for the developing world. These techniques
can be implemented using well-established tools, such as HOMER,
which accommodate several generation and storage types. More-
over, our methodology allows micro-grids to be designed with
respect to their unique load requirements. For example, if the base
load in our case study were a freezer used to store vaccines, instead
of frozen drinks, we would have specified different reliability re-
quirements. Similarly, if a community has seasonally elevated en-
ergy consumption as a result of important economic activity, the
proposed methodology allows such information to be incorporated
into design decisions.

5. Conclusion

We believe that the proposed methodology can be used in
unison with existing sizing tools, such as HOMER, to size many
future isolated micro-grids within the developing world. As illus-
trated by the case study in Section 3, our research suggests that cost
versus reliability trade-offs have the potential to significantly
reduce the cost of energy while maintaining an acceptable level of
service. In order to produce an acceptable design, two factors must
be considered. The first is determining high priority electricity
applications or devices. Identifying the uses of electricity will help
specify reliability requirements. The second important factor is
determining when high priority electricity demand occurs.
Answering this questionwill help to ensure energy shortfalls do not
happen when energy is most needed.

Appendix A

A.1. Energy balance algorithm and ESP

As previously stated, the efficacy of a micro-grid is assessed
through the use of an energy balance algorithmwith an hourly time
scale. In order to conduct a one-year simulation, the maximum
allowable battery charge level in Wh, EBmax, and the maximum
percent depth of discharge, DODmax, must be specified. As illus-
trated by Eq. (A.1), EBmax together with DODmax, define the mini-
mum level of battery charge in Wh, EBmin.

EBmin ¼ EBmaxð1� DODÞ (A.1)

In order to conduct the simulation, it is also necessary to
compute EPV(t), the energy generated by the photovoltaic module
for all hours. We calculated EPV(t) using Eq. (A.2), where Pnom is the
nominal power capacity of the PV module in watts, and IC(t) is the
insolation on the collector. We then compute the charge level of the
battery bank, EB(t), for all hours using Eq. (A.3).

EPVðtÞ ¼ ICðtÞPnom
.
1000 W=m2 (A.2)
Within the equation, Edem(t) is the energy demanded by the
micro-grid consumers. Represented as Fig. A1 is the output of
the energy balance algorithm for one week of data. When the
battery capacity has been depleted, we quantify the demand
that cannot be met using a variable called energy shortfall, ES,
which was proposed by Wissem et al. [8]. We define ES using Eq.
(A.4).
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Fig. A1. Energy balance algorithm calculations using weather from August 1, 2005
until August 7, 2005. Simulation uses micro-grid demand with refrigerator base load
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ESðt þ 1Þ ¼ Edemðt þ 1Þ � ðEPVðt þ 1Þ þ EBðtÞ � EBminÞ (A.4)
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Fig. A2. Plotted using a line in the upper subplot is a curve illustrating the multiple
combinations of PV and battery capacity which achieve an ESP of 0.05. Plotted using a
line in the lower subplot is the cost associated with each PV and battery combination.
Marked with an x in each subplot is the optimal cost solution for an ESP of 0.05.
We are then able to assess the micro-grid’s performance using a
metric called energy shortfall probability, ESP, which was also
proposed by Wissem et al. [8]. ESP is equal to the electricity de-
mand that a micro-grid was unable to meet divided by the total
demand over a specified time frame. It is calculated using Eq. (A.5).

ESP ¼
PT

t¼1ESðtÞPT
t¼1EdemðtÞ

(A.5)

Although time based metrics such as loss of load probability
(LOLP) may be used to evaluate system performance, these tend to
inflate the perceived performance of micro-grids in the developing
world. Many of the micro-grids we have observed are only used for
a small fraction of the day. We are more concerned about a micro-
grid’s ability to supply the energy demanded, and thus chose ESP as
our primary performance metric.

A.2. Optimization algorithm

The optimization algorithm calls upon the energy balance al-
gorithm to populate an iso-reliability curve, which defines all PV
generation and battery storage combinations which satisfy a
particular ESP. It then determines which PV and battery combina-
tion has the lowest cost. We can then apply this algorithm to a
range of ESPs to understand how system reliability influences the
consumer cost of electricity. We must specify several inputs in or-
der to utilize the optimization algorithm. The inputs are:

� the range of ESPs on which to perform system optimization,
� the incremental step sizes EB-step and PVnom-step by which the
battery bank and the PV array, respectively, are allowed to change,
� the insolation and electricity demand data which are called
upon by the energy balance algorithm, and

� the cost per watt of installed PV capacity and the cost per Wh of
installed battery capacity.
Establishing an end point on the iso-reliability battery versus PV
capacity curve

For a specified ESP, ESPtarget, the algorithm first uses Eq. (A.4) to
model the performance of the micro-grid system with a greatly
oversized PV module and battery bank. Pnom and EBmax are set to 50
times and 100 times, respectively, the maximum value of Edem(t).
Then, while keeping EBmax constant, Pnom is reduced by a fixed step
size, Pnom-step, and ESP is recalculated. The process of reducing Pnom is
iterated until we find from Eq. (A.5) that ESP is less than ESPtarget. We
then set the last Pnombefore the ESP fell belowESPtarget as PVnom,1.We
notate the maximum battery and nominal PV capacity of this com-
bination as EBmax,1 and Pnom,1, respectively. This point constitutes the
far right end of the iso-reliability curve illustrated as Fig. A2.

Populating the other points on the iso-reliability battery versus PV
capacity curve

In order to populate the next point on the iso-reliability curve,
Pnom is increased from Pnom,1 to Pnom,2 by Pnom-step, and EBmax is set
to zero. Thenwhile keeping Pnom equal to Pnom,2, EBmax is iteratively
increased by a fixed step size, EBstep, until the ESP is greater than
ESPtarget. We call the maximum battery capacity EBmax,2 at the point
when ESP exceeds ESPtarget. Together EBmax,2 and Pnom,2 constitute
the second point on the iso-reliability curve. The process of
increasing PVnom and finding the corresponding EBnom to achieve
ESPtarget is continued until PVnom has reached 50 times Edem(t).
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If a range of ESPs is input into the optimization algorithm, it will
report the lowest cost PV and battery combination and cost asso-
ciated with each reliability. From these data, we are able to then
construct a cost versus reliability curve for the system. From the
cost per vs. reliability plot, and the underlying data, we are able to
study how reliability drives system costs for any climate and de-
mand profile. It is important to note that due to the incremental
step sizes of PV and battery capacity, the achieved reliability of the
systemwill always be marginally higher than the specified value. A
diagram summarizing the optimization algorithm is illustrated as
Fig. A3.
Appendix B. Explanation of case study input parameters

B.1. Weather and demand data

Weather data was procured from the HelioClim3 database
which was produced by Mines ParisTech - Armines. They received
Meteosat data from Eumetsat and processed it into time-space
insolation data. For our energy simulations, we utilized the
hourly normal to sun ground insolation data from 2005. The co-
ordinates 13.45 N, 6.26 W and a ground reflectance of 0.20 were
used. One hundred and forty-four consecutive data points, August
24 through August 29, were missing from the data set. The missing
data points were “patched” using the same time of day data from
the immediately preceding days. Knowing the normal to sun
insolation data, ground reflectance, and panel orientation, we
calculated the hourly insolation on the collector using Eq. (7.33) of
Gilbert Masters [20]. A week of micro-grid generation data is
illustrated in Fig. A1 part B.

A week of 3 s resolution demand data was extracted from the
main meter on the currently installed micro-grid in the village
outside of Segou, Mali. The 3 s data were then aggregated to
hourly data. Because the loads in the village do not appear to
demonstrate season dependency, this week of demand data was
then copied 52.143 times in order to create a full 365-day year.
The week of micro-grid demand data is illustrated within Fig. A1
part A.
B.2. Cost parameters

The cost analysis included in this article only considered the
cost of the solar and battery equipment. It did not include the
cost of installation, maintenance, or additional hardware. We
estimated the cost of solar modules to be 1.50 USD/W and the
cost of batteries to be 0.20 USD/Wh installed. The max depth of
discharge of the battery bank was set to 0.50. It was estimated
that the life of the PV modules would be 20 years, and the life of
the batteries would be three years. It was also estimated that the
cost of PV modules and battery bank would be repaid using
annual payments over their respective design lives. A 10% annual
interest rate is added to repayment fees. Table B1 contains a
summary of the input parameters which affected our cost
calculations.
Table B1
Summary of input parameters for micro-grid cost estimation.

PV Battery

Cost per capacity 1.50 USD/W 0.20 USD/Wh
Design life/payment period 20 years 3 years
Interest rate 10% 10%
Annual payment 0.1762 USD/W 0.0804 USD/Wh
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