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A B S T R A C T

During the past 5 years, electrification in Kenya has grown by more than 30% due primarily to increases in grid
penetration and solar home systems. This represents a way forward for governments, international finance in-
stitutions, and entrepreneurs to address some of the challenges of energy access. However, little is understood
about how consumption has evolved among these newly-electrified customers. In this paper, we address this by
conducting a longitudinal analysis for 136k utility customers across Kenya over six years of electricity bills,
uncovering critical trends in spatio-temporal evolution of electricity consumption. Our analysis reveals that
recently-electrified customers are reaching their steady-state consumption more quickly than previous custo-
mers, that the steady-state is increasingly less, and that typical urban and peri-urban customers tend to consume
50% more electricity than rural customers. In addition we present implications for policymakers and electricity
planners considering grid extension and distributed systems for improving electrification.

1. Introduction

Developing countries regularly make critical decisions on how to
allocate precious public-sector resources to increase electricity access,
often with little evidence. Governments, finance institutions, and en-
trepreneurs are exploring new pathways for electrification such as solar
home systems and mini-grids, as well as redoubling investments in
traditional grid extension, all in an effort to build sustainable institu-
tions for delivering electricity services.

Grid extension efforts in Kenya have led to an up-tick in the per-
centage of population that has access to electricity at home; however, a
less well-understood change is the evolution of consumption among
these newly-electrified customers. Projecting future electricity con-
sumption is difficult, underscored by the observation that projections
tend to understate growth in electricity demand in the developing
world (Wolfram et al., 2012). Plausible electrification strategies depend
on analyzing existing customer data to predict the behavior of newly-
connected customers.

Kenya is an example of a country that has vastly expanded its
electrification – from 2010 to 2015, grid penetration has increased by
27%, more than doubling the number of customers on the centralized
grid – see Fig. 1 (Kenya, 2016). In addition to the centralized grid, there
are now upwards of 600,000 solar home systems deployed, which
contribute another 5–6% in electrification (estimated using census

figures (Kenya National Bureau of Statistics, 2009) and current popu-
lation estimates (AfriPop, 2010)). Most of the grid connections from
2010 to 2016 were residential, and nationwide residential electricity
consumption has increased at roughly 9% annually over the period.
Despite these large gains, little is understood about how much elec-
tricity these new customers consume, and even less is known about how
their consumption will change with time. This study seeks to address
this question: how much electricity do newly-connected electricity custo-
mers use, and how will that consumption evolve?

To that end, we present a longitudinal study of electricity con-
sumption growth in Kenya. This study is built upon a dataset of billing
records from Kenya Power, the sole distribution utility in Kenya. The
dataset includes monthly billing records over a six-year period, from
2010 through 2015, for a random sample from Kenya Power's customer
database at the end of 2015. After cleaning and meta-data verification,
the random sample amounts to roughly 136k residential customers. The
scale and extent of the longitudinal dataset is heretofore unseen in the
literature on electricity consumption for an African country. Further
description of this dataset is provided in Section 3. To identify which
customers in our randomly-sampled dataset are rural, we developed an
algorithm for determining which areas of the country are urban, peri-
urban, and rural based on a constrained clustering method – we de-
scribe this method and its relevance in Section 4 and Appendix A.
Subsequently we show results for urban and rural consumption, where
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the urban results are a straightforward combination of both urban and
peri-urban customers. In Section 5, we use the results of this method as
well as other customer meta-data in order to segment our sample of
customers and identify patterns of consumption growth among various
groups. We conclude with implications of this study for policymakers
and electricity planners, discussion of the limitations of our work, and
next steps for research in the area.

2. Related work

Accurate electricity consumption estimates are important in de-
signing electrical generation and delivery systems and meeting relia-
bility requirements. A study in Malawi (Louie and Dauenhauer, 2016)
uses off-grid data from 7 PV and battery systems to show the impact of
incorrect load estimation on system cost and reliability. They found that
system cost scaled proportionally with errors in consumption estimates,
where over estimation led to significant increases in system cost of
between USD 1.82 to USD 6.02 per watt-hour, while underestimating
consumption eroded system reliability. This dichotomy between system
cost and reliability emphasizes the need for data-driven approaches to
understanding and predicting consumption, which can in turn yield
more optimal system design.

In the case of residential electricity consumption, predictions are
typically made by using multiple variables including socio-economic
characteristics, appliance ownership, and living conditions. A literature
review on the topic suggests that at least 62 variables potentially affect
residential electricity usage (Jones et al., 2015). Other authors conclude
that some important explanatory variables for household electricity
consumption include appliance ownership, electricity tariffs, available
income, and number of residents in the household (Villareal et al.,
2016; Mensah et al., 2016; Esmaeilimoakher et al., 2016). While these
analyses offer a deep-dive into electricity consumption patterns, they
depend on expensive and time-consuming household surveys, rendering
them difficult to scale with similar resolution to larger areas such as

countries or regions.
Spatio-temporal analysis can provide insights to electricity con-

sumption over large areas. Socio-economic and demographic variables
such as population and income levels can be folded into such methods
when studying electricity demand. For example, Amarala et al. (2005),
Xie and Weng (2016), and Elvidge et al. (1997) demonstrate spatio-
temporal analyses using satellite imagery to study population and en-
ergy dynamics in various regions. Results from these papers show a
relationship between spatial dynamics, electricity consumption, and
population. To explore the differences in electricity consumption due to
urbanization, Xie and Weng (2016) use a pixel-based method to de-
lineate urban, suburban and rural regions in China. A universal defi-
nition for urban regions was difficult to obtain and the Chinese ad-
ministrative units “prefectural city” are a mix of both urban districts
and rural counties. The authors use population adjusted nighttime
lights to delineate urban areas. Land cover was then used to determine
the optimal nighttime lights threshold for highly dense built-up areas in
China. The obtained highly dense regions are labeled as the urban core
while the difference between urban regions and urban core gives the
suburban region. This definition of urbanization allows them to study
differences in electricity patterns by urbanization levels.

Chévez et al. (2017) propose another approach for obtaining spa-
tially homogeneous areas using k-means clustering algorithm. In this
case, rather than using urban, suburban and rural as homogeneous
areas, they define k clusters, where each cluster is a spatially homo-
geneous region. Homogeneity is defined by the authors as regions with
similar electricity consumption. The algorithm classifies n users with M
features into the k clusters. Given the number of clusters (k) defined a
priori, the algorithm finds k clusters which minimize the euclidean
distance as defined by sum of least squares. Initially, k × M values are
chosen to represent cluster centroids. The authors compute the eu-
clidean distance of each user from the initial centroids of the clusters
and then assign the user to the cluster which yielded the smallest dis-
tance from the user. The process is repeated until users do not change
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Fig. 1. Total number of customers and total electricity sales for Kenya Power between 2010 and 2016. Non-residential includes industrial, commercial, street
lighting, and off-peak loads. Customer additions were mainly to the residential sector. Data are from Kenya Power annual reports (Kenya, 2016).
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clusters. Upon assigning users to clusters, the authors then study elec-
tricity consumption. Unlike the previous method proposed by Xie et al.,
the authors do not have to manually determine thresholds for each
parameter to obtain spatially homogeneous regions. In our analysis, we
propose a similar method for obtaining spatially homogeneous elec-
tricity consumptions where we define spatial homogeneity as levels of
urbanization. We leverage the k-means clustering method, to obtain
pixel-based urbanization levels as described in Section 4.1.

Electricity consumption over large areas can also be decomposed
temporally to reveal unique consumption patterns. Multiple studies use
cross-sectional or panel data to understand the spatial and temporal
factors affecting electricity consumption. Sun et al. (2014) use 2013
cross-sectional data from the China Residential Energy Consumption
Survey (CRECS) to study household consumption patterns. By per-
forming single factor Analysis of Variance (ANOVA) and ordinary least
square regression they are able to show that energy expenditure varies
significantly with urbanization. Yan (2015) investigates the role of
urbanization in provincial energy intensities in China. He uses a ba-
lanced panel dataset for 30 provinces from 2000 to 2012, to develop a
temporal model used to understand the factors which drive energy in-
tensity. The temporal model regressed urbanization levels for provinces
in China along with other variables to estimate electricity intensity.
Results showed that urbanization increased electricity intensities. In
this paper, we take an alternative approach to empirical modeling as we
do not have sufficient customer meta-data such as income levels and
appliance ownership, to undertake a robust regression. In addition, the
variables which we do have (urbanization and connection dates) are
time-invariant. Thus by segmenting the study data through our ap-
proach we are still able to unpack the relative importance of urbani-
zation and levels of experience on electricity consumption. Our seg-
mentation approach puts less emphasis on regression coefficients which
may be spurious due to serial correlation in models while highlighting
both the underlying patterns and distributions within the study data.

3. Data description

Our study analyzes monthly electricity data of historical consump-
tion in Kenya for residential customers from January 2010 through
December 2015. The analysis first randomly samples customers from
Kenya Power's customer database of about 4 million customers, at the
end of 2015 and includes only residential customers with postpaid
electricity meters.1 This random sample consists of 152,752 customers.
Using customer meta-data such as the meter GPS location and date of
meter installation (connection), we remove customers with missing GPS
location or installation date data. After this filtering our study dataset
contains 135,579 customers. We use the bills of this study dataset for
subsequent computations and analysis.

Each bill is provided as a series of components, according to a block
tariff structure called the A0 (Residential) tariff. This tariff structure
includes a combination of fixed and variable components; a description
of these components is provided in Table 1. In addition to monthly units
of electricity consumption (provided in kWh), each component also
includes a bill amount (provided in Kenya Shillings – herein, KSh). In
this study, we exclusively report on units of electricity consumption
(kWh); discussion on the implications of this choice is provided in
Section 6.2.

While most customers have bill data for all or nearly all months,
there are some customers within this study dataset that have missing
bill data, creating an unbalanced panel. Fig. 2 shows the months for
which bill data are available for each customer, where customers are
sorted by date of installation (connection). Each horizontal line re-
presents a customer over time, with black indicating the presence of

data for that given customer in a given month. Conversely, white re-
presents the absence of data for the given customer in a given month.
Please note that the sample is biased to the rate of growth in Kenya
Power's customer base, and that we observe different epochs for each
customer based on the relationship between their connection date and
our study period (2010–2015). A small number of customers, seen in
the topmost rows of the graph, have six years of billing data but are
listed as having an installation date of March 1, 1995; we believe these
customers originate prior to 1995, but have incorrect installation dates
in our dataset. Based on our interaction with Kenya Power, installation
dates for customers originating prior to 1995 were not recorded thus
these customers were listed as having an installation date of March 1,
1995. We do not use data from these customers for determining cus-
tomer consumption growth patterns.

The customers are spatially distributed across Kenya as seen in
Fig. 3(a), where each dot represents a single electrical connection. For
comparison, Fig. 3(b) shows the population density of Kenya, where
each dot represents 100 people. Comparing customer locations to
overall population density, there are heavy concentrations of both
customers and people in the western, central, and coastal regions of
Kenya. The electricity customer dataset is biased towards higher-

Table 1
Kenya Power residential (A0) tariff components. Note that the tariff description
is as of the end of our study period; the tariff changed slightly on a couple of
occasions during the study period. Energy Resource Commission (2014).

Component Fixed/
Variable

Description

Fixed Charge Fixed 150 KSh
Unit Charge Variable 1st 0–50 units @

2.50 KSh/Unit
Variable 2nd 51–1500 units @

12.75 KSh/Unit
Variable 3rd Above 1500 units @

20.57 KSh/Unit
Fuel Cost Charge Variable 2.51 KSh/Unit
Forex Fluctuation Adj. Variable 1 KSh/Unit
Water Resource Management

Authority (WARMA)
Variable 0.05 KSh/Unit

Inflation Adj. Variable 0.23 KSh/Unit
Rural Electrification Program (REP) Variable 5% of Unit Charge
Energy Regulatory Committee

(ERC)
Variable 0.03 KSh/Unit

Value Added Tax (VAT) Variable 16% of (Unit Charge +
Fuel + Forex)

Fig. 2. Year of electricity connection versus number of months since the elec-
tricity connection, for each of the 136k customers. Each horizontal line re-
presents a customer over time, with black indicating the presence of data for
that given customer in a given month while white represents the absence of
data for the given customer in a given month. This figure shows (i.) the data
available for each customer and (ii.) the data available over different durations
of access.

1 The implications of analyzing bills only from customers with postpaid
meters are discussed in Section 6.2.
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density areas; evidence for this claim is available in Appendix A.

4. Methodology

In order to understand consumption among different groups, this
study conducts a combination of spatial and temporal segmentation of
the study dataset.

4.1. Spatial segmentation

Most newly-connected and unconnected households are in rural
areas. In order to identify these households, we classify the customers in
our dataset spatially by urbanization level. While it is common to use an
urban-rural classification, unfortunately there is no standard definition
of these categories (Christenson et al., 2014).

To address this, we developed a new method for identifying urban
and rural areas that makes use of high-resolution data on population
density, land use classification, and satellite nighttime light intensity.
We provide an abbreviated description of our method here, and de-
scribe our method in depth in Appendix A.

Similar to the approach used by Chevez et al., we apply a k-means
clustering method, however we apply some constraints to the method
(Wagstaff et al., 2001). The constraint k-means algorithm partitions
predefined pixels of Kenya into k clusters, such that the euclidean dis-
tance between the pixel's features and the cluster centroid are mini-
mized. Eq. (1) shows the objective function of the algorithm, where k
represents the number of clusters, ki the number of pixels in cluster i, xj
a vector of features for pixel j and νi is the cluster centroid for cluster i.

min x ν( )
i

k

j

k

j i
1 1

2
i

∑ ∑ ∥ − ∥
= = (1)

Unlike Chevez et al. we apply a non-random initialization to the
algorithm in the form of constraints as discussed in Appendix A. Once
the clusters are obtained, we use customer GPS locations to assign each
customer to a pixel and by consequence a cluster.

From our experience, the clustering algorithm works best with k 3=

clusters, which we identify as our urban, peri-urban, and rural areas.
Peri-urban represents areas on the urban fringe whose denizens may

access urban services and resources.
Fig. 3(a) shows the clustering results from our constrained k-means

algorithm. Three customer clusters are shown in blue (urban, 6.6% of
customers), yellow (peri-urban, 38.4% of customers) and violet (rural,
55% of customers). Areas classified as urban are mainly the cores of
Nairobi and Mombasa, the two largest cities in Kenya, although a few
urban areas can be seen in the smaller cities of Kisumu and Nakuru. The
peri-urban regions generally envelop the urban locations, although
other peri-urban locations border regions classified as rural. For this
study, we subsequently add the peri-urban cluster to the urban cluster
to form a single urban group; justification for this decision is provided
in Appendix A.

4.2. Temporal segmentation

To tease out underline behaviors, the data was decomposed using
two methods: by calendar date and by duration since customer elec-
tricity connection. For the former, post-paid billing dates are used to
aggregate consumption by calendar month. For the latter, the number
of months since a customer established their electricity connection is
used to group customers. Most of our analysis uses this latter char-
acterization, which aims to provide insight into growth of consumption
by the duration of customers’ experience with access to electricity. It is
important to note that this method conflates customers from different
eras into the same group, where bills from customers grouped by the
same duration of experience may come from different months or years.
We discuss the implications of this approach in Section 6.2.

5. Patterns in consumption

Using customer locations and our clustering method, customers
were categorized into rural and urban groups. Table 2 shows the
number of customers in each category for the entire study dataset, as
well as for those who received an electricity connection before 2009
and after 2009. A majority of customers in our dataset are in rural re-
gions (55%) and most received their electricity connection after 2009
(64.5%). Much of the recent increase in connection is due to efforts by
Kenya Power, the Rural Electrification Authority (REA), and the

Fig. 3. This figure compares the locations of electricity customers in our sample with the locations of population in Kenya. The customer locations are also segmented
by urbanization level, showing well-defined spatial transitions from urban to peri-urban to rural.
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Government of Kenya to improve access to electricity in rural areas and
slums, especially via the Last Mile Electrification Program (for densi-
fication of existing transformers) and the Global Partnership on Output-
Based Aid (GPOBA) Program (for formalization of connections in in-
formal settlements) (Kenya, 2016).

5.1. Consumption of a representative residential customer over time

Initially, we characterize the consumption over time of all custo-
mers in our study dataset regardless of the time they obtained a grid
connection. A representative residential customer is chosen as one
whose consumption is the median consumption of all customers in any
calendar month. Note that each month this representative customer
(here the customer with median consumption in that month) is not
necessarily the same customer. Fig. 4 shows electricity consumption of
the median customer (and the interquartile range of consumption le-
vels) for each calendar month from 2010 through 2015. The Figure
shows a declining trend over time for the median customer's electricity
consumption (the solid line in the figure). This in itself is indicative that
the utility must service an increasing number of customers whose
monthly consumption is reducing.

5.2. Consumption growth over time since connection

The prior section described the consumption of a representative
customer as observed by the utility. We wish to now understand whe-
ther the consumption of individual customers actually grows over time
and if the growth over time varies between rural and urban customers.

We initially examine monthly customer electricity consumption
over time as a function of the number of months a customer has had an
electricity connection; this draws on the assumption that new electricity
customers are similar in their consumption patterns regardless of when
they receive their first connection. Fig. 5 shows this organic growth in

consumption amongst residential customers in our study dataset. In this
figure, the solid line indicates the monthly median electricity con-
sumption, and the grey area shows the interquartile range. From this
figure, it is apparent that monthly electricity consumption for the whole
study dataset continually increases upon access.

Not all customer groups will experience the same organic growth
pattern. We use the previously-defined customer categories (urban and
rural) to further segment the consumption data. Fig. 6 shows electricity
consumption for urban and rural customers. Solid lines represent
monthly median customer consumption while dashed lines represent
the interquartile range.

Across all quartiles, rural customers consumed less electricity during
their first decade of access than urban customers. This distinction is
most pronounced with high-consuming rural consumers, who use sig-
nificantly less electricity than their high-consuming counterparts in
urban areas. Nonetheless, each group shows the same characteristic
pattern of fast initial growth followed by persistent though slowing

Table 2
Number of customers in each category (rural, urban). The rural category has
more customers, with most added after 2009.

Rural Urban Total

Full Dataset 74,609 60,970 135,579
2009 and After 54,896 32,800 87,696
Pre 2009 19,713 28,170 47,883
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Fig. 4. Monthly customer electricity consumption for 135,579 customers from
2010 to 2015. The solid line represents the monthly median customer's con-
sumption while the grey area represents the interquartile range of the study
dataset. From the utility's perspective, there is an increasing number of lower-
consuming customers.
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growth thereafter.

5.3. Does the year of connection matter?

So far we have shown that customers grow their consumption upon
receiving access, irrespective of their urbanization level. This perspec-
tive hides the possibility that customers connected to the grid earlier in
calendar time – possibly those who were urban and started out with the
means to afford a connection – might have different consumption levels
from those who were connected more recently through a wave of
subsidized rural electrification. Here we examine the effect of different
waves of connection by grouping customers into the year they received
an electricity connection.

Fig. 7 (a) and (b) shows median customer electricity consumption
for rural and urban customers, respectively. In order to ensure that we
can compare consumption of customers with the same age of electricity
connection, we consider only customers who received an electricity
connection in 2009 or later. Looking at the figure, it is apparent that the
year of connection is an important consideration for both the rural and
urban cohorts, as earlier connected customers (2009, 2010) tend to
peak and level off. Further, it is evident that more recently-connected
customers peak sooner and at lower consumption levels than those
customers with earlier connections. This pattern is fairly consistent,
showing that the most recently-connected customers simply do not
consume as much electricity as earlier customers even after their con-
sumption growth has abated. In fact, the median customer whose con-
nection began in 2009 consumes almost twice the electricity of the median
2014 or 2015 customer.

Although consumption patterns are similar across urban and rural
cohorts, it is clear from Fig. 7 that median urban customers consume
more electricity than median rural customers. To further explore how
much more electricity median urban customers consume, we computed
the ratios of consumption for each year of connection.

Fig. 8 shows these ratios of consumption for median urban to
median rural customers, separated by the year customers received an
electricity connection. From the figure we see that beyond the stabili-
zation period of 6–12 months the median urban customer consumes
50% more electricity than the median rural customer. This ratio pro-
vides a concise way to understand electricity consumption at varying
levels of urbanization.

5.4. Sample size considerations

Each step of segmentation reduces the sample size of customer bills

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90
Number of Months since Connection

M
on

th
ly

 C
us

to
m

er
 C

on
su

m
pt

io
n 

(k
W

h)

Year of
 Connection

2009
2010
2011
2012
2013
2014
2015

(a)

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90
Number of Months since Connection

M
on

th
ly

 C
us

to
m

er
 C

on
su

m
pt

io
n 

(k
W

h)

Year of
 Connection

2009
2010
2011
2012
2013
2014
2015

(b)

Fig. 7. Monthly median customer consumptions, separated by the year customers received a connection. The year the median customer received a connection
matters, as more recently-connected customers consume less electricity and peak sooner than customers connected at earlier times.
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Fig. 9. Monthly number of customers in the rural category, separated by
electricity installation dates. The large number of customers, numbering in the
thousands of bills, allows for confidence in the significance of our finding.
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available in the segment. To ensure that our conclusions are durable,
we examine the sample sizes of customer bills for these segments. Fig. 9
shows the monthly customer sample size for each year of connection.
To remove points with perhaps too few samples, we filtered out months
for which the sample size was less than 10% of the median sample size
for a given year of connection. Since each line in Fig. 9 is comprised of
distributions numbering in the thousands of bills, we have confidence in
the significance of our finding.

We apply the same sample size filtering approach to customers in
the urban segment.

5.5. Whose consumption is reducing?

To orient our observations towards the implications of increasing
electrification, we look specifically at the rural consumers, who will
comprise much of the further potential growth in the electricity cus-
tomer base in Kenya. We must realize that not all rural customers have
the same patterns in consumption; Fig. 7 (a) shows a drop in con-
sumption in the later months of access. This pattern stands out for rural
customers in 2009, 2010, and 2011 especially, whose consumptions
reduce anywhere between 12% and 28%. While these drops appear to
be synchronized in calendar dates, their appearance only among cus-
tomers who started their connections in particular years along with the
lack of any known macroeconomic change over the period raises
questions about what caused the drop. A drop in the median could be
the result of either an equally-distributed “broad” reduction or a deeper
reduction focused on a particular group of customers. To investigate
this question, we selected the rural customers from 2009 and 2011 and
looked at their consumption in two different time periods: all of 2013,
when both groups have reached their steady-state peak in consumption,
and the last five months of 2015, when the drop in consumption occurs.
Fig. 10(a) and (b) are migration charts that show the percentage of
customers that change their consumption bin from 2013 to 2015. Bin
boundaries measured by monthly consumption in kWh were chosen to
be consistent for the 2013 and 2015 groups. The 2013 customer sample
sizes of each group (n) are shown at the bottom of the chart.

We can see that for both groups more customers reduced con-
sumption than increased it and that reductions in consumption are
more concentrated in the lower portion of the distribution. We also see
that a larger percent of the 2011 customers dropped to the lowest
consumption bin in 2015 than the earlier 2009 customers. Table 3

compares the percentage of customers (2009 and 2011) who were in
the lowest consumption bin in 2013 and 2015. For 2009 customers,
29.3% of all customers were in the lowest consumption bin ( kWh20≤ )
during the 2015 period compared to 24% during the 2013 period; for
2011 customers, this number is more pronounced, at 43.9% of all
customers during the 2015 period compared to 34.5% during the 2013
period. Thus, for the 2011 customers, the reduction in consumption is
relatively more concentrated in the lower end of the distribution. Al-
though there is some migration to higher consumption bins, customers
at the lower end of the distribution are far more likely to reduce their
consumption and sometimes stop consuming entirely.

While some customers may actively elect to reduce their con-
sumption by purchasing more efficient lighting and appliances, others
may be deprived from enjoying the economic and quality-of-life bene-
fits of electricity consumption due to high electricity costs, poor relia-
bility, lack of access to financing for equipment purchases, damaged
equipment, or a combination of factors. We note that only a small
proportion of customers in our sample went to zero consumption,
which might imply a disconnection or other billing issue.
Understanding the motivations for reductions in consumption among
these lower-consuming customers, perhaps via surveys and other
measurements, is a critical next step for improving customers’ experi-
ences and outcomes with electricity access as well as building more
sustainable and durable electricity-providing institutions.

6. Policy implications and discussion

Examination of grid-connected Kenya Power customers shows that
the monthly median electricity consumption of the recently-connected
customers is lower than that of grid-connected customers from several

Fig. 10. Migration within the electricity consumption distribution for (a) rural customers with start dates during 2009 and (b) rural customers with start dates during
2011. Horizontal axis shows breakdown of customers by mean monthly consumption for the year 2013 and vertical axis shows breakdown of customers by mean
monthly consumption for the last five months of 2015.

Table 3
Comparing the proportion of customers in the lowest consumption bin for two
groups of customers: those starting in 2009 and those starting in 2011. For
customers who received an electricity connection in 2011, more customers
started in the lowest bin and a larger proportion moved there by 2015.

Customer % in [0,20] kWh % in [0,20] kWh
Start Year in 2013 in 2015

2009 24.0 29.3
2011 34.5 43.9
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years ago, comparing at the same point in time after connection. For
example, a median customer in an urban area who received a connec-
tion in 2009 consumed 43 kWh per month after 18 months while a
median customer in a rural area who received a connection in 2014
consumed 18 kWh per month after 18 months. This result shows that
electricity planning based on earlier consumption estimates may be
misleading. In this section we consider implications of our results, some
limitations, and the sensitivity of our analyses to important methodo-
logical choices.

6.1. Implications for electricity planning

Countries with low GDP per capita must make critical decisions on
how to allocate precious public-sector resources amongst competing
priorities, especially when it comes to spending on infrastructure. For
example, if Kenya tried to connect 1 million households annually to the
grid, the investment in distribution infrastructure alone would exceed
4% of the annual government budget. We are assuming here that in-
vestments in generation and transmission can come from private
sources. It is equally difficult to recover the investment cost from cross-
subsidies applied to industrial customers. Recovering an investment of
$1 billion USD from the 3575 presently-connected industrial consumers
with an average consumption of 95,000 kWh per month would require
an additional tariff of $0.25 USD/kWh levied on industrial customers;
this is clearly an unreasonable expectation. Hence a least-cost invest-
ment approach suited to anticipated electricity demand is crucial for
low-income countries. The results of this study can potentially help
Kenya Power to reduce the cost of providing electricity to households.
We propose three cost reduction approaches based on our findings: (i)
Solar Home Systems (SHS) for low consuming customers; (ii) Reforming
technical standards to connect more low-consuming customers within
the existing connection radius; and (iii) Extending the existing con-
nection radius.

Median consumption levels below 20 kWh/month for a residential
customer may provide a crucial tipping point when compared to
planning based on historical estimates of consumption – typically closer
to 50 kWh/month. For example, a 20 kWh/month consumption level
could possibly be met by an off-grid system that would deliver 500Wh/
day or a 150 Watt peak SHS costing $500 if such a shift did not limit a
customer's anticipated consumption growth. If a 20 kWh/month con-
sumption level were met with a grid connection, the connection cost
would be 2–3 times higher. On the other hand, for a 50 kWh/month
consumption level, the investment cost of an off-grid system is likely to
be higher than that of a grid connection. This simplistic example il-
lustrates how the results of this study impact electrification planning in
a resource-constrained economy. The real planning scenario is likely to
be much more nuanced and might depend on specifics of sub-popula-
tions that are being addressed.

Kenya's connection policy states that the utility charges customers
who wish to connect a flat fee if those customers reside within 600m of
any transformer on the grid. This fee is 34,980 KSh (≈$340 USD), or
15,000 KSh (≈$145 USD) under the subsidized Last Mile Connectivity
Program (LMCP). Customers outside of this radius who wish to connect
may do so at the full cost of the connection, on average $1200 or more
as the distance grows. The reasoning behind this 600m policy is a
combination of engineering and cost constraints; the voltage drop ex-
perienced as well as the cost of poles and conductors needed both in-
crease with a longer distance from the transformer. Knowledge of an-
ticipated demand can shape appropriate engineering requirements of
the grid. For example, one could easily and safely reduce the service
standard, sized for a peak 3 kW load to perhaps 1 kW for lower-con-
suming customers. This would in turn lower cost of transformers,
conductors, and cables as more customers can be added onto the same
transformer. Less stringent yet still sufficient technical standards enable
the utility to densify existing transformers at the current connection
radius, lowering the per customer transformer cost, as more low

consuming customers can be accommodated on the same transformer.
Alternatively, extending the connection radius with the same wire

standards would potentially also allow a low-voltage wire to reach
customers located further away from the transformer. In Fig. 11, we
show the implications for Kenya Power if the connection radius were
increased. For this analysis, we use a greedy algorithm that places new
transformers in the locations that maximize the population covered.

At present, 62% of Kenya's population lives within 600m of Kenya
Power's roughly 58,000 transformers, and the Government of Kenya has
a stated goal of providing access to electricity to 100% of the popula-
tion by 2020. According to the figure, maintaining the same connection
policy and attempting to reach 85% of Kenya's population with the grid
would require an additional 35,000 transformers. However, newer
transformers are in rural areas where customers are further apart, but
voltage drops are lessened due to lower consumption per customer.
Thus, relaxing the 600m constraint no longer poses as much of an
engineering challenge and would enable the grid to reach more custo-
mers with existing or fewer additional transformers. If the policy were
changed to allow any customer within 1 km of any transformer to
connect for a flat fee, it would take fewer than 5000 additional trans-
formers to reach the same 85% of the population.

While the cost of connections is still a heavy burden achieving those
connections by extending existing low-voltage infrastructure, as op-
posed to deploying new transformers, may present a lower-cost option.
Further, this strategy would align well with the LMCP, which aims to
densify existing underused transformers using a budget of roughly $450
million USD. It is important to note that existing plans for the three
phases of LMCP (an investment of roughly $450 million USD) include
only 1400 additional transformers, challenging the Government of
Kenya's stated goals of reaching 70% electrification by the end of 2017
and universal electrification by 2020.

Without a significant change of direction on alternative means of
electrification, massive reductions in connection costs, or unexpectedly
high growth in electricity consumption, the utility model faces severe
challenges in meeting the dual mandate of universal electrification and
investor profitability. Sustained low consumption levels will hinder the
financial viability of utilities whose goal is to increase electricity access.
It may be possible to boost consumption and by consequence financial
viability via targeted programs such as appliance financing and tariff
subsidies. These can create more growth in electricity consumption,

Fig. 11. The proportion of Kenya's population within range of any of Kenya
Power's transformers under two different connection fee policies: (1) customers
within 1 km of any existing or new transformer can connect for a flat fee (red
line) and (2) the existing policy, where customers within 600m of any existing
or new transformer can connect for a flat fee (black line). Note that Kenya
Power presently has a total of roughly 58k transformers, and those transformers
are within range of 62% of the country's population. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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support higher quality-of-life and have potential income benefits for
customers while supporting the dual mandate of electricity providers.

Although our discussions have focused on Kenya, we believe that
Kenya Power's experience can highlight broader lessons that are re-
levant for utilities in other developing countries.

• Customer consumption may not grow at a constant percentage over
time.

• Performing better customers analytics, prior to deciding how to
connect these customers can result in fewer underutilized grid
connections, allowing more customers to be reached at a cheaper
cost.

• The assumption that everyone must be connected in the same
manner has both benefits and costs, and it is important to quantify
the costs to design evidence-based policy.

6.2. Additional considerations

Urban/Rural Sensitivity: Urbanization levels were defined using a
combination of datasets. However, we recognize that there are a range
of classification methods for determining urbanization level, and that
our results are sensitive to the method we used. Additionally, not all
rural regions are similar – localized economic effects will not be cap-
tured by this approach, but we attempt to deal with this by primarily
considering medians as well as interquartile ranges, so as to not be
affected by extremes in the distribution. Further, definitions of urba-
nizations are hardly static as captured in our clustering analysis. These
definitions change with time and are influenced by changing socio-
economic factors and migration. Thus our definition of urbanization
levels only capture one snapshot, which is at the start of the analysis
period (2010). Future work on this topic is to examine how consump-
tion evolves in areas that experience slower or faster changes in urba-
nization levels.

Other Temporal Effects: Analyzing customer growth on a calendar
basis conflates the effects of a growing customer base with those of an
evolving customer base, a typical situation for grids in sub-Saharan
Africa. In an effort to disaggregate these two, we spend the majority of
our analysis analyzing customers via the lens of time since electricity
connection. While transforming the temporal axis from calendar dates to
time since electricity connections reveals relevant information for elec-
tricity access, there are also adverse effects to consider. This approach
obscures the effects of cyclic and seasonal changes, macroeconomic
shocks, and, as we show in this work, differences among newer and

older customers. While we acknowledge that these exogenous events
occurred during our study period, we believe that a six-year duration to
our study should allow examination of larger trends in growth of con-
sumption among these customers.

Tariff and Meter: We use kilowatt-hours as the measurement of
consumption over time, with limited consideration of the various tariff
structures in place for these customers. Some of these tariff components
changed during the course of the study period; for example, in mid-
2014, the fixed tariff increased from KSh120 per month to KSh150 per
month. Some of the variable tariff components also had small changes
during the study period, and others, such as the Foreign Exchange
(Forex) and Fuel Cost Charges changed on a monthly basis to reflect
market conditions. While many of these changes were seemingly neg-
ligible, more in-depth analysis is needed to estimate the scale of these
effects on longitudinal consumption.

In particular, our sample consists of customers only on postpaid
electricity meters. Initially, we do not have any clear evidence that
differentiates these customers from customers with prepaid electricity
meters. However, since customers with postpaid meters tended to re-
ceive their connections earlier, as a class they are likely more wealthy
than their prepaid counterparts, potentially depressing the consump-
tion values reported throughout this paper. We take it as future work to
understand the implications of examining only customers with postpaid
meters, and seek to compare the consumption patterns among those
customers with postpaid and prepaid electricity meters.

Equity: Different electricity delivery technologies within the same
community challenge notions of equity in electricity connections and
may pose political barriers. Quantifying the costs of equity of connec-
tions, though not necessarily equity of service, are worthy of further
study, though beyond the scope of this work.

7. Conclusion

Developing economies are undergoing rapid growth in the number
of customers with electricity access. This work analyzes the dynamics of
electricity consumption among newly-connected customers in Kenya
over a recent six-year period. While reaching the entire population with
some form of electricity access is a goal of all countries, it is vital to
consider the challenges therein. If, as our results show, the expected
consumption plateau is lower for newer customers, then the lowest-cost
technology for initially providing electricity access to some customers,
at least until the demand grows significantly, may not be grid power.

Appendix A. Classification

We applied a constrained k-means clustering method (Wagstaff et al., 2001) to identify three clusters (urban, peri-urban, and rural). We initially
used two clusters, representing urban and rural areas, but discovered that the numerical uniqueness of the urban cores of Nairobi and Mombasa –
with high population density and intense nighttime lighting – set those areas apart into their own cluster. The peri-urban surroundings of the cities
and the rural areas were quantitatively more similar and therefore grouped into the same cluster. This does not agree with conventional definitions
of urban areas. By identifying three clusters, the algorithm is able to separate these “peri-urban” areas from the rural areas, arriving at a much more
justifiable classification. We also note that electricity consumption levels across all quartiles were largely similar between the urban and peri-urban
categories, so we felt comfortable pairing these two clusters into a single category representing urban consumption.

The constrained k-means clustering method works by exploiting accepted characteristics about urban areas, which is used to apply initial
constraints on the clustering algorithm. For identifying these initial constraints, we leverage three methods for determining urban and rural locations
from the literature. We use the spatial regions of overlap of these three methods to bootstrap our algorithm, effectively identifying consensus-urban
regions. The methods include:

1. The Global Rural-Urban Mapping Project (GRUMP) (Socioeconomic Data and Applications Center, SEDAC, 2010), which combines census and
satellite data to produce various datasets, including urban masks used in this analysis;

2. LADA Land Use Systems of the World data which provides 40 land-use classes for the world including urban areas (Land Degradation Assessment
in Drylands, 2010); and

3. The UN population estimate (The United Nations Population Divisions World Urbanization Prospects, 2010), which uses a national urbanization
level (23.6% in the case of Kenya) to determine a threshold of population density at which to separate urban areas and rural areas.

The constraints (consensus regions) describe which items in the dataset must be or cannot be “linked” (appear in the same cluster). These areas
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provide the initial conditions of the clustering algorithm, effectively bootstrapping the cluster definitions with areas that must appear in the same
cluster. With this guidance for initial cluster relationships, the algorithm can then proceed to assign the remaining areas to any of the three clusters.
To determine cluster membership, the algorithm uses features obtained from three 2010 data sources, all of which are available publicly and in a
raster format at a maximum common resolution of km km1 1× :

• Population Density via WorldPop (AfriPop, 2010);

• Nighttime Lights via the DMSP-OLS satellite imagery dataset (NOAA's, 2010); and

• LADA Land Use Systems of the World data which provides 40 land-use classes for the world including urban areas (Land Degradation Assessment
in Drylands, 2010).

Various methods for urban-rural classification in the literature employ one or two of these datasets, but we were unable to find any methods that
used all three data sources. Prior to applying the clustering algorithm, the features are normalized by their mean and standard deviation. The
algorithm is able to classify each km km1 1× grid cell of Kenya as urban, peri-urban, or rural. Based on this classification, customers in our sample
can be assigned to an urbanization level using the GPS locations of their electric meters.

Table 4 compares our method under 2 and 3 clusters to the other urbanization methods, in classifying the total population of Kenya. We show
that our method under 3 clusters better allows us to extract the most rural population of Kenya, compared to when we only apply 2 clusters.
Although our method performs similar to existing methods when defining urbanization levels, our method offers a robust clustering approach
because it leverages regions which existing definitions all agree to be urban, and uses these regions to initialize the clustering thereby providing a
more trustworthy definition of urbanization.

In Table 5 we also show the performance of our method in classifying our study dataset of about 136k customers. The peri-urban customers
defined in our 3 cluster approach tend to be carved from mostly the urban customers in a 2 cluster approach- although there are some from the rural
cluster. This result aligns with our decision to group urban and peri-urban customer consumption while understanding the behavior of the most rural
customers.
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Table 4
Comparison of our clustering method with other definitions of urbanization, in classifying the total population of Kenya in 2010.

Urbanization methods Urban (%) Rural (%) Peri-Urban (%)

Our Method (2 clusters) 15 85 NA
Our Method (3 clusters) 5.4 81.7 12.9
GRUMP 22.6 77.4 NA
Land Use Systems 11.9 88.1 NA
UN Population Estimate 23 77 NA

Table 5
Comparison of our method with other definitions of urbanization, in classifying the 136k customers in our sample, by urbanization level.

Urbanization methods Urban (%) Rural (%) Peri-Urban (%)
Our Method (2 clusters) 32.9 67.1 NA
Our Method (3 clusters) 6.6 55 38.4
GRUMP 53 47 NA
Land Use Systems 22 78 NA
UN Population Estimate 46 54 NA
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