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a b s t r a c t

As the tropics and subtropics become increasingly urban, industrial and affluent, energy demands for
thermal comfort may evolve differently than they have historically across the global North. Already,
heating, ventilation and air conditioning account for 35% of total primary energy in the United States, and
are expected to reach similar proportions in China within 5 years. With increasing population in high
temperature areas, electricity demand for increased air-conditioning usage may drive extreme electricity
peak demands and total usage. This paper presents comparative estimates of peak and annual electric
cooling and heating electricity usage at the city-scale, including both OECD and non-OECD member
cities. Our results indicate that mature urban economies of the OECD exhibit a cooling electricity
response of 35e90 Watts per �C per capita above room temperature for cooling (interquartile range of
estimates). Tropical/subtropical cities outside the OECD (mostly in South Asia, Africa and the Middle East)
currently demand just 2e9 W/�C/capita, indicating significant growth in temperature-dependent elec-
tricity demand as air conditioning is adopted. A similar story is unfolding on the heating side, with
subtropical cities adopting electric resistive heaters, potentially precipitating additional electricity gen-
eration and delivery concerns, particularly electric resistance heating is adopted instead of heat pumps.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Urbanization, rising incomes, and the income elasticity of en-
ergy services in emerging economies will largely determine the
trajectory of global energy needs (and associated environmental
impacts) over the coming decades [1]. As economic development in
emerging markets trends towards eventual parity with Organiza-
tion for Economic Cooperation and Development (OECD) nations,
we should likewise expect increasing provision of energy-utilizing
services and technologies [2], including: thermal comfort (cooling,
dehumidification and heating); food storage and preparation
(refrigeration, cooking, microwaving); cleaning (washing, drying);
work productivity, communication and entertainment (mobile
phones, computers and television); and lighting. As population
growth, improved living conditions and economic expansion lead
to an increasing number of households and businesses, energy
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requirements will further increase [3,4].
In developed cities, building energy use accounts for roughly

half of all greenhouse gas (GHG) emissions, according to a review of
eight U.S. cities [5]. According to a review of ten international cities
[6], roughly half of building energy-related GHG emissions is due to
electricity generation to serve those areas. Further, the average U.S.
GHG emissions for non-baseload electricity generation are 36%
higher than those for baseload electricity generation, indicating
higher GHG emissions for temperature-dependent loads [7]. In
developing cities, buildings account for a slightly smaller share of
city-wide GHG emissions, estimated at 43% for a case study of Delhi,
India [8], using the same system boundaries and methodology as in
Ref. [5].

Many of the world's largest and fastest-growing cities are
located in South Asia and Sub-Saharan Africa with tropical to sub-
tropical climates unlike those of most OECD member cities. Given
their climates, tropical regions are expected to see increasing levels
of primary energy usage for thermal comfort, as air-conditioning
(and even space heating) adoption and conditioned space re-
quirements increase. While appliances, lighting, electronics and
computing reduce heating requirements in cold climates, they have
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Abbreviations

AC Air Conditioning
CDH Cooling Degree Hours
CI Confidence Interval
EIA Energy Information Agency
FERC Federal Energy Regulatory Commission
HDH Heating Degree Hours
HVAC Heating, Ventilation and Air Conditioning
IQR Interquartile Range
LDC Load Duration Curves
NCDC National Climatic Data Center
NOAA National Oceanic and Atmospheric Administration
T Temperature
TLC Temperature-Load Curve
Tt Threshold Temperature
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an adverse effect on cooling requirements. At the city-scale, HVAC
may play an even larger role since building energy use tends to
dominate in urban areas and urban areas generally do not have
significant opportunities for generationwithin the city. This may be
exacerbated due to heat-island effect, and tendency towards
service-economy, which increases the relative share of air-
conditioned commercial real estate.

Pachauri and Spreng [9] found that as incomes rise, urban
households in India consumemore energy per capita and transition
from emissions-intensive biomass and kerosene to clean burning
LPG and electricity; both trends point towards higher electricity
usage.

The thermal comfort-seeking behavior, specifically, has exhibi-
ted itself in Delhi's electricity demand being a U-shaped function of
ambient temperature with the demand's sensitivity to higher
temperatures increasing over time [10]. A similar analysis of 28
Indian states showed the summer electricity demand to be more
sensitive to temperature in hotter Indian states and, conversely, the
winter electricity demand to be more sensitive to temperature in
colder Indian states [11]. Similarly, an extensive study of Mexico's
residential electricity usage showed that with increasing income,
air conditioning usage increases dramatically in warmer regions
[12]. This trend is much more modest in cooler regions where air-
conditioning adoption is just beginning to show in higher income
areas.

The higher penetration of cooling equipment in warmer cli-
mates and heating equipment in colder climates is both intuitive
and consistent with historical air conditioning adoption patterns in
the U.S.; however, even at a relatively low 500 cooling degree days,
penetration exceeds 60% of U.S. residences [13].

To illustrate the potential for vast differences in expected energy
needs for thermal comfort between cities in the global north and
cities in the tropics/subtropics, consider Delhi, India. With its large
population, hot summer and hot-humid monsoon season, Delhi's
has no analog in the global north, but is typical of South Asia. With
temperatures approaching 50 �C (122 �F) during intense heat
waves, peak electricity demands for cooling in Delhi may exceed
150% of the peak electricity demands for cooling in New York City.
In addition to higher temperatures, the cooling season is also much
longer. As such, over the past three years, Delhi had four times as
many cooling-degree days as New York City (assuming a 65 �F
basis). Compounded by (a) “leaky” building envelopes in devel-
oping world cities (sometimes intentionally designed to accom-
modate natural ventilation), (b) heat-island effects, and (c)
increasing urbanization, will impact peak electricity demand in
emerging megacities. The interrelated effects among these factors
are complex; however, the recent availability of higher resolution
electricity data provides an opportunity to evaluate current energy
usage of specific cities within a wide and varied sample of urban
areas.

In this paper we analyze hourly electricity demand profiles for
17 electric utilities serving emergingmarket cities in South Asia, the
Middle East and Africa (non-OECD), and provide comparison to 18
mature urban economies in the U.S. and Japan (OECD). The intent is
to identify the relationship between electricity demand and
ambient temperature in order to determine the cooling and heating
electricity response to temperature; in turn, the contribution of
cooling and heating to overall electricity usage is estimated in each
urban area. We focus on thermal comfort as compared to other
end-use energy services because it is the largest driver of peak
electricity demand in the residential and commercial sectors
[14e16], which in turn dominate the energy footprint of
population-dense cities [6]. Peak demand dictates capacity re-
quirements for generation, transmission and distribution infra-
structure. The difference between peak demand and baseload
demand – driven in large part by thermal comfort requirements –
has significant implications for choice of generators, GHG emis-
sions, integration of renewables and load factors, which in turn
drive utility economics.

We limit our inquiry to final (or “site”) electricity. Nearly all
cooling is provided by electricity whereas heating is provided by
several possible sources, primarily fossil fuels and likely varying
significantly across our study set of cities. Therefore, this study
offersmore quantifiable insight into cooling than heating; however,
it is likely that increased heating for thermal comfort in tropical and
sub-tropical regions may come primarily from electric heating.
Hence, even though we focus on cooling, we do include electricity
for heating in our analysis and discussion.

2. Background to analytical approach

The methods for analyzing, estimating and predicting building
energy usage are plentiful and have been reviewed in detail else-
where [17e20]. Such an in-depth review is beyond the scope of this
paper; however, this section reviews various methods considered
for the present study to provide readers with the authors' rationale
and basis for the analytical approach used.

2.1. Integrated assessment models

Eom et al. [21] identify five structural variables that drive long-
term building energy use: (1) population growth, (2) economic
growth, (3) urbanization, (4) per-capita floor space, and (5) demand
for building energy services. This formulation is supported by
Refs. [6] and [22], and serves as the foundation for a widely used
building energy sub-routine of the Global Change Assessment
Model (GCAM) [23].

GCAM belongs to a class of models known as integrated
assessment models, which approximate a web of interactions be-
tween endogenous variables given exogenous boundary conditions
[23]. Integrated assessment models such as GCAM are well-suited
to high-level, economy-wide scenario analysis (see Refs. [24] and
[25] for two particularly relevant examples).

2.2. Physical models

On the other end of the spectrum are physical models that
require detailed climatological, meteorological, and building sys-
tems design, construction and inventory data. Physical models are



Fig. 1. Five-parameter change-point regression Model.
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well-suited to answer specific inquiries regarding near-term energy
use at high resolution. They do not attempt to model interactions
with the broader economy. There are many such models in the
literature and in common practice, covering a wide range of
building typologies and climate zones, and therefore, we only
attempt a cursory catalog of salient examples.

Building energy demand for thermal comfort (in particular) has
been evaluated for many regions of the world: China [21,26]; Hong
Kong [27]; Malaysia [28]; Jordan [29]; Turkey [30]; Europe [31] and
multiple regions [32]. There have also been a large number of
studies looking at the effect of climate change on heating/cooling
demand in buildings: Australia [33]; Burkina Faso [34]; Switzerland
[35]; Honk Kong [36]; UAE [37]; Tehran [38]; Germany [39]; Mul-
tiple regions [26]; Subtropics [40]; a global outlook [41] and two
review articles [42,43].

Physical models are the most widespread tool for simulating
energy demand in a specific building, particularly for their ability to
evaluate the effects of potential technical modifications to those
buildings or design options for new buildings. However, our study
takes an urban metabolism approach in which the behavior of the
entire city is of interest. Few cities in the world publish full
building-stock inventories (including residential, commercial, in-
dustrial, government and public buildings such as hospitals, li-
braries and schools) sufficient to reasonably estimate total urban
energy demand from the bottom-up. Even if this information were
available widely, the performance of individual buildings is highly
variable and the “smoothing” effect that occurs in aggregating
buildings across a city would render this effort far too complex for
the goals of the present study. For this reason, we opt for a statis-
tical approach using high time resolution electric utility data.

2.3. Statistical models

Statistical energy demand models include regression, pure
time-series, andmixed-method econometric models. Rallapalli and
Ghosh [44] apply a non-stationary time-series model to accurately
predict electricity demand in all 5 regional power grids of India.
Their model outperforms official forecasts of the Central Electricity
Authority of India for both in-sample and out-of-sample prediction.
Econometric approaches to estimate income elasticity of electricity
usage have also been developed for Korea [45], Switzerland [46],
United Kingdom [47] and India [48e50]; these approaches can be
cataloged intomacro- andmicro-level approaches. Macroeconomic
approaches employ top-down, national/sub-national summary
statistics [1,51], whereas microeconomic approaches use bottom-
up household survey data to analyze differences across heteroge-
neous sub-groups [48e50].

2.3.1. Regression models
Diurnal and seasonal variability in urban electricity demand is

driven, in large part, by human response to meteorological factors
[14,52]. A previous study of the relationship between summer peak
electricity demand in Israel and a host of meteorological parame-
ters demonstrated that a simple linear model with just a few pre-
dictors, namely temperature and humidity, performs as well as
more complex models with many additional predictors. In a similar
study of Australia, a complex demand forecast model with over 50
model parameters was ultimately reduced to include only daily
maximum and minimum temperatures and relative humidity to
estimate electricity demand [52].

A study of five Chinese cities in distinct climate zones estimated
baseline and future cooling and heating demand for a single generic
air-conditioned office building [25]. While orthogonal variables
(dry bulb temperature, wet bulb temperature and solar radiation)
were identified through principal component analysis, the
resulting model was essentially a proof of concept and particular to
a simulation of a specific building's energy usage.

2.3.2. Change-point regression models
The primary goal of this paper is to develop a standard method

to assess temperature-dependence of urban electricity demand
without the need for detailed city-wide building inventories. For
this task, we propose change-point regression models, widely used
in building energy audits and energy management references to
compare buildings to one another, to a reference case, or to itself
pre- and post-modification [53e55]. Fig. 1 shows the general form
of a five-parameter, steady-state, univariate model for electricity
use as a function of ambient temperature.

In Fig. 1, E0 represents the temperature-independent electricity
usage; s1 is the slope of the heating signal in the electricity data; s2
is the slope of the cooling signal in the electricity data; T1 is the
temperature below which the heating signal is detected; and T2 is
the temperature above which the cooling signal is detected. The
model therefore has the general form:

E ¼ E0 þ s1ðT1 � TÞþ þ s2ðT� T2Þþ (1)

Change-point regression allows complex dynamics to be
reduced to a multiple parameter model that can be evaluated using
minor adjustments to traditional linear regression analysis when
the system being evaluated responds to a variable in two or more
regimes [56]. In its most basic form, this is used when the influence
of a single variable (ambient temperature, T, in the case of Eq. (1))
on some response (energy use, E, in the case of Eq. (1)) depends on
whether it is less than or greater than some “change-point” value.
For this study, in climates with both cooling and heating electricity
responses: At low ambient air temperatures, electricity demand
decreases as temperature increases because electric heating de-
mands are reduced; however, at higher ambient air temperatures,
electricity demand increases as temperature increases.

Statistical methods are used to determine both the change-point
value(s) of the variable (T1 and T2 in Fig. 1 and Eq. (1)) and the linear
response of the system (s1 and s2 in Fig. 1 and Eq. (1)) to the variable
in the regimes on either side of that change-point [56]. The history
of the application of change-point regression, particularly in
biostatistics [57], has been well-documented [58]. These methods
were later adapted to estimate individual building cooling de-
mands [59] and changes in building energy demands due to
building retrofits [60]. Change-point regression models are now
used as a standard data-driven modeling method in energy audit-
ing, management and estimating [61].
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This approach has been used at the aggregate building scale in a
few previous studies. Bessec and Fouquau [62] evaluate the tem-
perature dependence of electricity demand at the national scale for
countries in Europe. Moral-Carcedo and Vicens-Otero [63] provide
a detailed assessment for Spain. We extend this methodology to
city-scale electricity demand for a large number of cities, spanning
multiple climates and economic zones. The purpose of our model is
not precise prediction (we leave that to the electric utilities
themselves), but rather a generalized framework that can be
applied across multiple, data-sparse cities simultaneously with
reasonable accuracy.

3. Analytical approach

Energy demand projections abound, but are often saddled with
excessive complexity [64]. Complexity translates to proliferation of
estimated model parameters, which in turn compounds uncer-
tainty, limits degrees of freedom, diminishes generalizability and
obfuscates interpretability.

A review of multi-decadal energy demand forecasts for the U.S.
economywas found tobe consistentlyoff themark [65]. Forecasts by
the U.S. Department of Energy for 1975 to 2000 overestimated de-
mand by up to a factor of 2. In fact, of a dozen independent energy
forecasts evaluated, only one proved accurate [66]. “A perception
that a complex model with extensive input data produces more
accurate results might not be always true” ([64], pg. 8). The impor-
tance of parsimony in energy modeling cannot be overstated [67].

To side-step many of these pitfalls, we propose a well-defined,
theory-driven and empirically-supported iterative change-point
regression model for estimating urban electricity demand for
cooling and heating. Broadly speaking, population and economy
size and functions drive baseload electricity demand at annual to
decadal timescales; climate drives seasonal variability; and human
behavior, physiology and meteorology drive diurnal patterns. This
study considers the latter three – climate, weather and human
physiology – in the context of demand for electricity for thermal
comfort. The objective of this study is to answer four key research
questions:

1. What is the current level of electricity demand for cooling and
heating services in major emerging cities, as measured by the
cooling and heating electricity response in units of MW/�C/
capita referenced to a computed threshold temperature?

2. What is the magnitude of seasonal electricity usage for cooling
and heating in major emerging cities, as measured by total
GWh?

3. What portion of the peak electricity demand corresponds to
electricity demand for thermal comfort?

4. How does the share of annual electricity usage used for cooling
and heating compare across cities, as measured by a fraction of
the total?
3.1. Data

At present, there is scant baseline information publically-
available on urban electricity demand for a cross-section of global
cities. This article aims to fill that gap. In addition to the tables,
figures and analysis reported here, all of the underlying data is
curated and made freely available (with citation) on Github. We
encourage fellow researchers to fork the repository and contribute
new data via pull request.
This study combines hourly time resolution electricity demand
and meteorological data with annual census information for 35
global cities.

The starting point for identifying major emerging cities was the
UN World Urbanization Prospects [68], subset to the 100 fastest
growing cities with more than 2 million inhabitants. For compari-
son, data for US cities was collected from the Federal Energy Reg-
ulatory Commission and the US Energy Information
Administration. Appendix Table A1 summarizes the data sources
used.

3.1.1. Weather data
High-resolution weather data are indispensable to accurate

energy demand forecasts [14,15,52,69]. Fortunately, national
weather services and climate information centers such as the U.S.
National Oceanic and Atmospheric Administration (NOAA), Brit-
ain's Met Office, and India's Institute for Tropical Meteorology
(IITM), collect, curate, analyze and publish meteorological data
from thousands of weather stations worldwide. The appropriate
resource was used for each city analyzed; Appendix Fig. A1 com-
pares some climate characteristics for the cities considered in this
study.

3.1.2. Demand data
Hourly electricity demand datawas collected for 18 OECD and 17

non-OECD electricity utilities, system operators and regulatory
bodies serving cities of interest for the most recent years for which
data is available. Data was collected on as consistent a basis as
possible given the recording practices of the individual entities;
however, a few exceptions should be noted:

1. The National Capital Territory of Delhi (population 23 million)
was disaggregated into five “cities”, each served by a distinct
and non-overlapping electricity distribution company; see the
Appendix “Supplementary Information” for details.

2. Data for Beirut, Lebanon and Amman, Jordan were estimated
from national data. The Jordanian utility NEPCO provided
monthly ratios of electricity usage for Amman compared to
Jordan as a whole. The ratio was approximately 50% for all the
months. (Note: Amman is the only major city in Jordan.) The
Lebanese utility EDL provided ratios of 15% from 8am to 12am,
and 22% from 12am to 8am for Beirut as compared to Lebanon as
a whole.

3. Data for Abidjan, Ivory Coast and Dakar, Senegal were estimated
from country level loads by the utilities themselves: monthly
ratios of peak demand at city-level feeders compared to peak
demand for the national grid as a whole were applied.

4. Data for Philadelphia includes the surrounding areas.
5. Data for Manila includes the whole Luzon islands.

While variability in the data definitions and integrity is inevi-
table in a study covering such broad areas in both developed and
developing countries, we are confident that our review and pro-
cessing of the data is sufficient to serve the purposes of our analysis.
Where we think source data may have affected the results for
particular locations, we have included explanations and caveats in
the interpretation of our results.

3.1.3. Population data
Population data was collected from many sources as per Ap-

pendix Table A1. They are used to normalize cooling and heating
electricity response and usage estimates to a per capita level as
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described below.
The population data collected for some U.S. cities from EIAwere

in the form of “residential customer count”. They were therefore
multiplied by the U.S. average number of persons per household
(estimated to be 2.63 by the U.S. Census Bureau) to obtain a pop-
ulation service count. For these cities, the collected load data from
FERC were related to the corresponding EIA customer count by
merging the FERC 714 form with the EIA 826 form.
3.2. Methodology

Two main analyses are performed on the set of city-year data,
described above: (1) Estimating the sensitivity of the daily peak
demand of electricity to ambient temperature, and (2) esti-
mating the annual amount of electricity used for thermal-
comfort seeking (cooling and heating). The below sections
detail the key concepts and methodology used to obtain these
estimations.
3.2.1. Cooling and heating degree hours
For every city-year combination, Cooling Degree Hours is

defined as the sum at every hour of the difference between the
recorded temperature and some reference temperature, Tref. We
have defined this as the threshold temperature. If this difference is
negative, it is taken as 0:

CDH ¼
X8760

hour¼1

�
Tobserved;hour � Tref

�þ
(2)

In a similar way, Heating Degree Hours is defined as the sum at
every hour of the difference between the threshold temperature
and the observed temperature at that hour. If this difference is
negative, it is taken as 0:

HDH ¼
X8760

hour¼1

�
Tref � Tobserved;hour

�þ
(3)

In other words, CDH and HDH represent the number of degrees
per year that require cooling and heating, respectively, to reach the
degree of thermal-comfort set by the “comfortable” threshold
temperature. It is important to note that this is not necessarily the
air temperature at which people are comfortable, but the “balance
Fig. 2. Temperature-Load Curves: (a) 2012 change-point regression mode
point” temperature at which other loads (e.g. internal equipment
heat gains and solar gains) balance heat loss or gain with HVAC
services. This temperature is usually set at 18 �C or 20 �C in heating/
cooling degree reporting, however the subsequent sections will
derive a threshold temperature that is specific for the city-year
considered using change-point regression.
3.2.2. Temperature-Load Curve (TLC) & threshold temperature (Tt)
In performing our analysis, we noted a near-V-shaped behavior

(i.e. a single change-point and, thus, no difference between T1 and
T2 shown in Fig. 2 and Eq. (1)) in the cities' data. Therefore, we
define this single change-point temperature as the Threshold
Temperature (Tt) and set T1 ¼ T2 ¼ Tt. With this assumption, we
applied the change-point regression approach to the pairwise ob-
servations of hourly temperature and electricity demand in
megawatts (MW) in order to develop a “temperature-load profile”
of every city-year-hour combination. Each year is evaluated sepa-
rately to identify any changes to the electricity demand's response
to temperature over time. Each hour of the day (1e24) is evaluated
separately to control for diurnal rhythms and thermal mass effects
that become observable through hysteresis behavior. Separate city-
year-hour models also allow for checking the stability of results
across multiple models.

Iterative testing has shown that to obtain a profile suitable for a
regression fit, temperature-load data must be available for at least
the equivalent of 3 months to capture a sufficiently wide range of
temperatures. Therefore, all the collected data were filtered and a
small number of city-year combinations were omitted as a
consequence.

Economic activity is typically lower on weekends compared to
weekdays, and electricity demand is commensurately lower. To
account for this effect, which is unrelated to temperature, week-
ends were analyzed separately from weekdays.

Plotting the electricity demand against temperature gives the
Temperature-Load Curve (TLC). Depending on the prevalence of
cooling and heating appliances and share of individual building
types, as well as many other factors in each city, the form of the
temperature-load profile varies. Cities with distinct cooling and
heating seasons (such as New York City, latitude¼ 40.65�) will have
a V shaped TLC. The right side of the curve represents the cooling
regime: As temperature increases, demand for electricity increases
because of cooling requirements. The cooling regime, and therefore
l for New York City and (b) 2012 linear regression model for Dakar.
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throughout the presentation and discussion of the results. It represents the average
incremental electric power in 1 h required for thermal comfort for a 1 �C change in
ambient air temperature per person.
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the city's sensitivity to high temperatures is characterized by a
positive coefficient referred to in this paper as the Cooling Coeffi-
cient (s2 in Eq. (1)). The left side of the curve represents the heating
regime: As temperature decreases, demand for electricity increases
because of heating requirements.

The cities' sensitivity to cold temperatures is characterized by a
coefficient (s1 in Eq. (1)) referred to in this paper as the Heating
Coefficient, which tends to be lower in absolute terms than the
Cooling Coefficient because it does not capture all heating sources
and efficiency effects. In many cities, heating needs are met pre-
dominately by natural gas or heating oil, and not electricity,
although some electrical heating exists, and even with other fuel
sources electricity needed to operate pumps and fans that
distribute hot water and air. Because our study focuses on elec-
tricity only, and no other fuels, our estimates of integral energy
usage for electric heatingwill almost certainly be underestimates of
total heating energy in a city.

The threshold temperature, Tt, is the observed temperature
above which the cooling signal in the electricity data begins to
dominate the heating signal; it does not necessarily mean there is
no cooling below this temperature or no heating above this
temperature.

In contrast to New York City (described above), most cities in the
tropics and sub-tropics tend to have cooling but no discernable
heating signal. For example, Dakar Senegal (latitude ¼ 14.7�) has a
distinct cooling season only, as can be seen from the TLC (Fig. 2).

A third category is cities located in temperate climates with
little-to-no cooling and heating infrastructure and, thus, no strong
relationship between temperature and electricity demand. The TLC
for these cities will lack a definite threshold temperature and the
slope of the regression will not be significantly different than zero.

3.2.3. Cooling and heating electricity responses
To quantify the TLC for a set of global cities, cities are divided

into two groups: (1) Cooling and Heating cities, and (2) Cooling or
Heating cities. For cities with cooling only or heating only, a simple
linear regression is used in place of the change-point regression
analysis to model demand as a function of temperature. For cities
with cooling and heating, a change-point regression is performed
where two restricted linear models (one for cooling, one for heat-
ing) and the change point defining the boundary between the two
regimes are iteratively estimated to minimize the total sum of
square root errors. A bootstrap restarting method is applied to
escape local optimawhen spurious local optima or multiple optima
exist. The intercept and beta coefficients (s1, s2) for the two linear
models are estimated simultaneously by ordinary least squares
given an initial condition of the “breakpoint” between the two
linear regressions. Since a large number of city-year combinations
are considered in this study, we developed functions to automate
the process in R [70]. For every city-year combination, the first step
of the algorithm is to compute the interquartile range (IQR; the
range between the 25th percentile and the 75th percentile) of the
temperature distribution.

The Heating Coefficient, s1, Cooling Coefficient, s2, the threshold
temperature, Tt, along with the statistical significance of all
parameter, are extracted and saved for every city-year scenario at
daily peak load observations. This process is then repeated for every
hour of the day (0e23) for each city-year combination. That is, a
linear/change-point regression model is fit to all the weekday/
weekend midnight, 1 ams, 2 ams, etc. resulting in 48 TLCs for each
city-year combination. This will be used in the next section to es-
timate integral electricity usage for cooling and heating.

To illustrate this, we show the TLC (Fig. 3) for New York City in
2012 at midnight, 6am, 12pm and 6pm. Note the change in slope in
cooling and heating electricity response depending on time of day.
The Cooling and Heating Coefficients obtained at every hour for
every city-year scenario are a measure of demand for electricity for
thermal comfort; that is, how much electricity is required to keep
residents in a city comfortable as ambient air temperatures change.
Coefficients are expressed as positive values in MW/�C and there-
fore represent the incremental change in electricity demand for
every 1 �C change as the air temperature moves away from the
threshold temperature in either direction.

3.2.4. Integral electricity usage for cooling and heating
After estimating the characteristic electricity demand for cool-

ing and heating at each hour of the day (0e23) for each year from
the TLC, the estimated total annual electricity usage for thermal
comfort is computed by multiplying electricity demand per �C by
the degree hours computed by Eqs. (2) and (3). Before computing
integral electricity usage, a data filter was applied to select city-year
combinations containing the equivalent of at least 350 days of
hourly observations. 350 days was chosen instead of 365 days to
allow a modest tolerance for missing data.

Cooling Energycity;yr ¼
X8760

hour¼1

Cooling Demandcity;yr;hr

�
�
Tobserved;city;yr;hr � Tt;city;yr;hr

�þ
(4)

Heating Energycity;yr ¼
X8760

hour¼1

Heating Demandcity;yr;hr

�
�
Tt;city;yr;hr � Tobserved;city;yr;hr

�þ

(5)

For any city-year-hour combination, if the Cooling Coefficient or
Heating Coefficient determined per Section 3.2.3 is not significant
at the 90% confidence interval, it is set to zero and not included in
the annual electricity usage calculations per Eqs. (4) and (5).

4. Results and discussion

The following section presents results and discussion for each of
four stated research objectives. The results of the analysis described
above and presented here represent the first comparative analysis
of electrical cooling and heating demand at the city-scale, including
both OECD and non-OECD member cities.

4.1. Cooling

A significant cooling signal was detected (90% confidence level)
for 33 of 35 cities analyzed. The only cities without a clear cooling
signal in all years analyzed wereMbabane, Swaziland (elev.1243m,
lat. �26�, long. 31.3�) and Nairobi, Kenya (elev. 1661 m, lat �1.3�,
long. 36.8�). Both cities are at high elevation, withmild climates and
coolnights, suggesting thatelectrical cooling is unnecessarymuchof
the year, and thus adoption of capital-intensive AC is commensu-
rately low, even by the non-OECD cities' standard. By comparison,
Abidjan, Cote d'Ivoire had no detectable cooling signal as recently as
2010, but now has a highly significant (99% CI), though moderate in
scale, cooling electricity response of approximately 3 W/�C/capita,1

suggesting very recent uptake of cooling appliances.



Fig. 3. Temperature-Load Curves and change-point regression models for New York City, 2012 at midnight, 6am, 12pm and 6pm.

Fig. 4. Observed growth in cooling electricity response for example tropical/subtrop-
ical cities.
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In Accra, Ghana, both the effect of temperature on electricity
demand, and the significance of that effect are increasing year-on-
year. Virtually across the board2 among non-OECD cities, this holds
true: the cooling electricity response is higher now (most recent
year data is available) than even just a few years ago (first year data
is available). The trend holds true (increasing, but not strictly
monotonic) for Abidjan, Cote d'Ivoire; Accra, Ghana; Amman,
2 The only non-OECD cities with a measurable cooling signal and more than one
year of data but no observed increase in cooling electricity response over the
reporting period were Delhi and its subdistricts, and Beirut, where the changes
were minimal. In Delhi, it is widely known that overall demand for cooling is
increasing (Cohen 2014 Dissertation), and thus the apparent decrease from 2011 to
2012 may simply be due to noise in the data. Annual trends can only be established
with at least three years of data.
Jordan; Chandigarh, India; Dakar, Senegal; and Manila, Philippines
(See Appendix Table A2 for relevant quantities.). Fig. 4 illustrates
these phenomena for Abidjan, Dakar and Manila. It shows daily
peak demand increasing year-on-year, and its relationship to
temperature intensifying.

Fig. 4 suggests significant, latent, unmet demand for indoor
thermal comfort services in emerging market cities. As incomes
continue to rise, so will penetration of vapor-compression refriger-
ation window-units (e.g. AC) and resistive electrical heaters in the
near term, and central heating/cooling and electric heat pumps in
the long-term. Electricity demand for cooling, dehumidification and
heating will rise accordingly. How high it will ultimately go, is a
central question of this research. As an upper-estimate, we can
presuppose that demand for thermal comfort services will reach
eventual parity with OECD cities on a W/�C/capita basis as tech-
nologies, infrastructure and building design and construction
practices appropriate formechanicallycooledbuildings are adopted.

Integrating cooling and heating electricity response over expected
CDH and HDH, respectively, for a given city yields a lower-bound
estimate of total annual electricity usage for indoor thermal com-
fort. This method can be used for historical, current-year or future
projections by adjusting the per-capita heating/cooling electricity
response, heating/cooling-degree hours and population. Such ad-
justments can be used to assess change over time along the devel-
opment spectrum and incorporating the effects of climate change.

As a group, non-OECD cities were found to have maximum per-
capita cooling electricity responses ranging from 0 to 13 W/�C/
capita in all but two locales.3 By comparison, cooling electricity
responses in the OECD ranged from 15 to 151 W/�C/capita. The
interquartile range (IQR) of cooling responses in non-OECD cities
was 2e9W/�C/capita compared to 35e90W/�C/capita in the OECD.
The median per-capita cooling electricity response was ten-times
higher in OECD compared to non-OECD cities (50 versus 5 W/�C/
capita, respectively).

The only OECD cities in our study with low per-capita cooling
demands approaching those of the non-OECD set, were San Diego
and Honolulu (at 21 and 22 W/�C/capita, respectively). These two
locales have pleasant, coastal climates with annual average tem-
peratures at a near-perfect 22 �C.

Within the OECD set, there is substantial variation. Of U.S. cities
with distinct cooling and heating seasons, higher-density cities
generally required less cooling electricity per capita for a step
change in temperature than did low-density cities. Low-density
3 Amman, Jordan at 47 W/�C/capita; and New Delhi (not to be confused with Old
Delhi nor NCT Delhi as a whole; only the relatively new governmental district) at
40 W/�C/capita.



Fig. 5. Per capita peak electricity demand and estimated contribution from cooling.
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cities were found to have the highest per-capita cooling electricity
response, likely attributable to higher per-capita residential-com-
mercial air-conditioned space, proximity to inexpensive coal-
generated electricity and general trends related to later urbaniz-
ing areas.

US cities that primarily developed post-World War II show
particularly strong cooling electricity responses to temperature:
Chattanooga, TN (151 W/�C/capita); North Little Rock, AK (128);
Springfield, IL (125); Omaha, NE (113); Indianapolis, IN (99). By
comparison, population dense and older New York City had
computed cooling electricity response values of less than 40 W/�C/
capita. A group of OECD cities that share some features with both
groups, and perhaps unique historical development characteristics,
fall in a cooling response rangeof 66e92W/�C/capita. Theper-capita
peak electricity demand, and the estimated contribution of cooling
to this peak demand, is shown in Fig. 5 for all cities analyzed; the
fraction of total peak electricity demand required for cooling is
shown in Fig. 6 (Appendix Table A3 summarizes relevant quantities
included in this discussion and required to create Figs. 5 and 6.).

Fig. 5 shows a clear distinction in peak demand between OECD
andnon-OECDcities, save for the central governmental areaofDelhi,
which behaves similarly to high density OECD cities. Tacoma, with a
far lower estimated cooling demand at the time of peak electricity
demand, can be explained by that demand occurring during the
heating-dominated season; this indicates deep penetration of
electric heating, reflecting Tacoma's easy access to hydroelectric
power.

Fig. 6 shows more clearly the trend (and expectation) that more
developed cities require more cooling as a portion of their peak
demand. The portion of peak electricity demand in non-OECD cities
remains relatively small when compared tomost OECD cities. As AC
adoption grows, it is expected that the peak demand will grow, as
well as the difference between the peak demand and the average
demand (and base demand). This further suggests that other
electric appliances are first adopted before air conditioning.

New Delhi (NDMC; the seat of government), at 40 W/�C/capita,
has a per-capita cooling electricity response roughly four times that
of neighboring parts of the city. This reflects stark differences in the
building stock: many large government buildings have been ret-
rofitted for air-conditioning, a departure from traditional open-
envelope building design. Cooling demand in neighboring dis-
tricts of Delhi will likely catch up quickly as AC becomes
commonplace in middle-income households and businesses in all
quarters of the city.



Fig. 6. Per capita cooling electricity demand as percent contribution to peak demand.
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Amman, Jordan, at 47 W/�C/capita, has per-capita cooling elec-
tricity response nine times higher than that of Beirut, although the
cities are less than a 150 miles apart and have similar climates
(Beirut is more temperate given its location on the Mediterranean).
This may be explained, in part, by Amman being the only major city
in Jordan (and thus may be home to a disproportionate level of
economic activity compared to its population), whereas Lebanon
has several cosmopolitan cities. As noted above, Amman and Beirut
electricity demands were estimated from national data; potential
discrepancies in our analysis are possible due to this assumption.
4.2. Heating

Given that heating relies on a mix of on-site sources (electricity
typically being less widely used, particularly in developed coun-
tries), a peak heating electricity presentation analogous to that
shown for cooling in Section 4.1 is not relevant; however, heating
electricity was included in the annual thermal comfort electricity
usage calculations described in Section 4.4, below. That said, some
comments pertaining to the electricity demands for heating are
pertinent (Appendix Table A4 summarizes relevant quantities
related to the heating analysis.).
A significant heating signal in the electricity data was detected

(90% confidence level) for 21 of 35 cities analyzed: As tempera-
tures decrease below the threshold temperature unique to each
city, electric demand increases. That is, an inverse-linear rela-
tionship is observed between temperature and electricity demand
below the threshold temperature, typically 15e25 �C in this study,
depending on the city. The threshold temperature tends to be
lower in OECD cities than in non-OECD cities, indicating that
higher internal heat gains from electrical and other equipment,
along with wider usage of air-conditioning equipment, causes the
shift from heating- to cooling-dominated electricity used for
thermal comfort at lower ambient temperatures in more devel-
oped cities.

Cities with no significant heating signal fall into two categories:
(1) tropical, coastal or otherwise mild climates with little need for
heating, and (2) cities that likely will require heating for indoor
thermal comfort during parts of the year, but have yet to reach
significant penetration rates of heating appliance ownership (or do
not have the types of large, complex buildings that use central
system to heat water or air for distribution, thus requiring pumps
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and fans). Category two are of particular interest because they will
undoubtedly change significantly over the next several years and
decades as incomes rise, the cost of heating appliances come down,
and western living standards are sought. The potential for wider
adoption of electric heat pumps will be an influential development
to monitor, as it may not be possible to consider peak demand a
summer issue alone.

Non-OECD cities that do currently have statistically significant
heating electricity signals include Amman at 30.5 W/�C/capita,
Beirut (1.2 W/�C/capita), Chandigarh (4 W/�C/capita), Delhi W-SW-
S districts (2 W/�C/capita), Delhi Military Cantonment (7 W/�C/
capita), Delhi NW-N districts (1.5 W/�C/capita), Mbabane (3.6 W/
�C/capita) and Nairobi (1.22 W/�C/capita). In Chandigarh and Nai-
robi, per-capita heating electricity response were not significantly
different from zero as recently as 2011, but have since become
significant and increased year-on-year in each of the past three
years.We expect this trend to continue (increasing demand, but not
strictly monotonic) for years to come as more households and
businesses adopt space heating.

The case of Amman may be particularly illustrative of heating
system transitions. Jordan is higher on the development spectrum
than India and sub-Saharan Africa; it experiences cold winters,
though they are more mild than those of the U.S. and Europe.
Amman's fairly high heating signal indicates some adoption of
electric heating, perhaps with the combined effects of high effi-
ciency heat pumps remaining too expensive and moderate annual
heating degree hours causing much of this adoption to be in the
form of electric resistance heating.
Table 1
Per-capita peak electricity response for cooling and heating in W/(�C x capita). Minimum

City Year Range Heating Electricity
(W/�C/capita)

Minimum

Abidjan 2010e2013 0
Accra 2013e2014 0
Amman 2011e2014 25.7
Antigua 2011 0
Beirut 2011e2014 0
Chandigarh 2011e2013 0
Chattanooga 2006e2013 32.0
Colorado Springs 2006e2013 4.56
Dakar 2011e2014 0
Delhi 2011e2012 0
Delhi - BRPL 2011e2012 0
Delhi - BYPL 2011e2012 0
Delhi - MES 2011e2012 6.84
Delhi - NDMC 2011e2012 0
Delhi - NDPL 2011e2012 0
Detroit 2006e2008 3.74
El Paso 2006e2013 0
Eugene 2006e2013 44.5
Honolulu 2006e2013 0
Indianapolis 2006e2008 21.3
Kano 2013 0
Los Angeles 2006e2013 0
Manila 2011e2013 0
Mbabane 2013 3.64
Nairobi 2011e2013 0
New York City 2007e2013 3.34
North Little Rock 2010e2013 3.98
Omaha 2006e2013 7.75
Philadelphia 2009e2011 3.74
Sacramento 2006e2013 0
San Diego 2012e2013 0
Singapore 2013 0
Springfield, IL 2011e2013 4.09
Tacoma 2006e2013 42.1
Tokyo 2008e2014 11.5
4.3. Peak load analysis summary

Table 1 summarizes the key parameters in assessing the effects
of thermal comfort on peak electricity demands in the study urban
areas, which are discussed in more detail in Sections 4.1 and 4.2,
above. Of all non-OECD cities with at least three years of data (to
establish trend) and a measurable cooling signal, five of six saw
their cooling electricity response increase over the period of record.
This suggests continued, increasing penetration of air-conditioning
and increasing square-footage of air-conditioned space.

OECD cities exhibit both significantly higher peak demand per
capita and higher estimated peak cooling demand per capita,
compared to cities in non-OECD countries (Amman remains an
outlier). Examining Delhi-NDMC in this context indicates the po-
tential future expectation for other non-OECD cities and they
continue to develop. Greater penetration of AC equipment will
push the non-OECD countries to higher peak electricity demands
with potentially serious implications for the development of those
electricity systems.

How AC is adopted and used in the developing, non-OECD cities,
and the associated fluctuations in daily and seasonal demand will
affect the type of electricity generators that can meet the cities'
demands, as well as the economics of the overall electricity system
due to the effects of temperature-dependent electricity demands
on the capacity factor of generators required to meet the most
extreme conditions.

As an example, the potential for extreme high temperatures in
Delhi could result in cooling electricity demands far exceeding
and maximum values given for the range of years analyzed for each city.

Response Cooling Electricity Response
(W/�C/capita)

Maximum Minimum Maximum

0 0 3.23
0 1.69 3.97
30.6 44.9 47.4

6.74
1.21 3.74 5.53
3.99 8.6 11.4
60.5 128 151
11.69 29.6 50.3
0 2.04 2.35
0 4.36 5.72
1.98 9.08 11.9
0 5.84 6.59
7.26 9.11 9.26
0 39.4 39.9
1.53 5.54 7.26
6.77 59.5 72.3
8.27 41.4 66.2
60.4 53.0 72.1
0 6.91 21.7
31.6 92.5 99.3

0.5
0 24.8 42.2
0 3.37 4.28

0
1.13 0 0
6.46 34.1 39.4
7.4 113 128
15.8 89.7 113
3.97 57.2 60.3
14.2 78.8 92.4
0 14.9 21.4

13.34
12.9 102 125
47.7 44.8 52.8
24.8 41.3 53.7
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those of OECD cities. If Delhi's threshold temperature and cooling
electricity response were to become similar to those estimated for
the dense developed cities of New York City or Tokyo, the peak
cooling electricity demand would equal 1262 W/capita or 1446 W/
capita, respectively. If Delhi's threshold temperature and cooling
electricity response were to become similar to the less dense
developed cities of North Little Rock or Chattanooga, the peak
cooling electricity demand would equal 3244 W/capita or 4357 W/
capita. As a point of comparison, in the analysis described in this
paper, Chattanooga had the highest per capita peak cooling de-
mand, 1685 W/capita. As such, depending on how Delhi develops
and adopts air conditioning, challenges of a scale significantly
greater than those seen in the OECD are possible.

The contribution of heating to electricity demands is also clear
in both OECD and non-OECD cities (particularly those with low
temperatures during some portion of the year). As electric heating,
particularly through the use of electric heat pumps, becomes more
widely adopted, their influence on electricity demands will grow
and, in some climates, may surpass the influence of cooling on
electricity demands.

4.4. Annual electricity usage analysis summary

In addition to the implications of the peak demand, the total
Fig. 7. Annual average per capita electricity usage for coo
electric energy required for thermal comfort services is also of in-
terest. Fig. 7 indicates that estimated per capita electricity usage for
thermal comfort varies remarkably across cities, ranging from 0 to
3132 kWh/capita/year for cooling, 0e2195 kWh/capita/year for
heating and 0.25e4808 for total thermal comfort.

Midsize U.S. cities with low population density -e representa-
tive of the post-World War II suburban boom – including Chatta-
nooga, TN; Indianapolis, IN; Little Rock, AK; Springfield, IL; and
Omaha, NE; were found to have the highest estimated per-capita
electricity usage for thermal comfort services. This is likely attrib-
utable to large, single family homes, big-box stores and more air-
conditioned real-estate in general (per-capita) compared to cities
with a more compact and vertical urban form. High-density OECD
cities, such as New York and Tokyo, use less than half as much
electricity per-capita for cooling and heating as their more
sprawling counterparts. Building envelope performance (e.g. insu-
lation levels and airtightness) may also be a factor. We may spec-
ulate that moderate climates without extreme heat or cold or with
very low energy costs may not have had a historical incentive to
improve building envelope performance; however, these effects
would require extensive study of representative buildings across
the cities and, likely, detailed physical modeling (Appendix
Tables A2 and A4 summarize relevant quantities used to create
Fig. 7.).
ling and heating, compared to total electricity usage.



4 Household expenditure data was not available for Delhi for the year of interest
for Delhi, so we used GDP as a proxy. Our value is likely an overestimate because
GDP includes household, business and government expenditures. Second, we were
unable to extrapolate appliance ownership rates from Ref. [22], which reported
appliance ownership as a function of household expenditures up to 1500 USD-ppp/
capita; the GDP/capita for Delhi is nearly 30,000 USD-ppp/capita [72].
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Subtropical cities, in general, were found to have very low inte-
gral electricity usage for cooling, despite a large number of cooling
degree hours. For example, Delhi, Singapore, Antigua, Dakar, Accra,
Abidjan and Manila, have cooling requirements ranging from 53 to
370 kWh/capita/year, compared to 2193e3782 kWh/capita/year for
Midwestern U.S. cities. This is despite the fact that the former have
far higher CDH (50,000e70,000 �C$hour) than the latter
(12,000e27,000 �C$hour). This indicates that cooling is only just
emerging in the non-OECD cities.

The share of total annual electricity usage dedicated to thermal
comfort provides an indicationofwhere thenon-OECDcitiesmaybe
headed.Of note is the thermal comfort electricity needs (particularly
for cooling) ofDelhiNDMC,which is as highorhigher thanmanyU.S.
cities (Fig. 7) and generally represents the largest percentage share
of total electricity usage among all cities studied, as shown in Fig. 8.
This is likely due to the combination of rapid uptake of air condi-
tioning and an extreme climate (intense heat during the pre-
monsoon summer, followed by high heat and humidity
throughout themonsoon season).Delhi is still rapidlydeveloping, so
it is both an indicator of where the other non-OECD cities in our
study may be heading and a warning that the electricity usage we
will see in Delhi (and perhaps eventually other cities) in the future
may far exceed what OECD cities require for such services.

In general, across all cities surveyed, higher electrical usage was
estimated for cooling than for heating, which is likely due to the
more widespread use of heating fuels (as opposed to electrical
heating) and low heating demands for tropical to subtropical cities.

4.5. Quantitative comparison with previous studies

Several previous studies have estimated urban energy re-
quirements for cooling and heating. This section uses two of the
most relevant references to as a benchmark for comparison with
the results presented in this paper. The selected studies take an
entirely different approach from that described in Section 3, and
thus provide independent estimates.

Chaturvedi et al. [1] simulate building energy demand for India
out to 2095 [1]. takes a top-down approach, applying national-
average data on residential-commercial asset ownership and
building square-footage as inputs for a building energy service
subroutine [21] of the Global Change Assessment Model [71].
Modeling is performed separately for urban and rural buildings
given different baseline conditions and divergent trajectories.
Broadly [1], highlights the same key findings as the current study:
Urbanization and demand for building energy services are key
drivers of global energy usage.

As a comparison with [1], we estimate annual per capita elec-
tricity usage for cooling services to be 434 kWh for the Northeast,
East and Central districts of Delhi; 438 kWh in the NW-N districts,
517 kWh in the military cantonment, 569 kWh in the W-SW-S
districts, and 1578 kWh/capita/year in New Delhi, the government
and VIP area of the city.

Applying cooling appliance ownership, usage and wattage esti-
mates from Ref. [1] and scaling by the number of households in Delhi
and the average number of people per household [72], we arrive at
an estimate of 29 kWh/capita/year for NCT-Delhi based on the India-
wide estimates of [1]: An order of magnitude lower than our esti-
mates, indicating significantly more electricity use per capita for
thermal comfort in NCT-Delhi than the country as a whole. This is
likely due to both larger conditioned floor areas (both residential and
commercial) and higher cooling appliance ownership in Delhi.

We also benchmark our results with that of [22], which presents
a family of deterministic equations for estimating final energy us-
age for building energy services in urban and rural India. Of
particular interest from Ref. [22] are the estimates of unit energy
consumption (UEC) for cooling appliances. They estimate UEC, in
units of kWh/household/year, for electric air-conditioning (ac) and
evaporative cooling (evap) as follows:

UECac ¼ CDD� �
0:865� ln

�
Yppp

�� 6:04
�

(6)

UECevap ¼ UECac � 300
2160

(7)

where CDD are cooling degree days with an 18 �C threshold tem-
perature, and Yppp are household expenditures adjusted for pur-
chasing power parity.

Following the formula and estimates of [22] for Yppp, CDD and
persons per household for Delhi, we arrive at a harmonized esti-
mate of cooling electricity usage of 1853 kWh/capita/year. This is
very similar to our empirical estimate of 1578 kWh/capita/year for
New Delhi, the government and VIP area of Delhi, despite the need
to approximate certain inputs to the formulae of [22].4 Further,
there may be underlying electricity demand for cooling spaces
year-round (e.g. for data centers or other spaces with very high
internal loads) that would not be captured in our analysis.

5. Conclusion

This study provides a baseline assessment of urban electricity
demand for cooling and heating in 35 global cities e 18 in the OECD
and 17 outside the OECD. We estimate the electricity demand for
thermal comfort, as a response to ambient temperature, using
empirical electricity demand and meteorological data. We derive
the threshold temperature between cooling and heating regimes in
each city, and suggest using this as a basis for cooling and heating
estimates rather than a traditional fixed threshold temperature
across all cities in order to better reflect local micro-climates,
building stocks, and energy use behaviors. Our results indicate
significant difference in cooling electricity requirements of OECD
cities (35e90 Watts per �C per capita) and non-OECD cities (2e9
Watts/�C/capita); however, the trends observed through our anal-
ysis indicate the gradual (and in some cases rapid) adoption of air
conditioning equipment in developing cities.

Non-OECD cities in cooling climates likely exhibit lower cooling
electricity response thandoOECDcities because of lowpenetrationof
cooling equipment. Some non-OECD cities (most notably New Delhi)
are further along the development spectrum, already use significant
amounts of electricity for cooling and heating, and are located in re-
gions thatexperienceveryhigh temperatures.Thesecities are likely to
see significant increases in both annual electricity usage and peak
electricity demands for thermal comfort in the future. Delhi already
exceedsnearlyallOECDcities included in the studyandmayserve asa
harbinger of what is to come in other developing cities; even Delhi is
likely to see significant growth in electricity demand for thermal
comfort as its cooling electricity response to ambient temperature
remains lower than all OECD cities studied.

The reasons for the differences in thermal comfort electricity
usage estimates for specific OECD cities can be surmised based on
historical development patterns in the U.S. and the urban ecology of
the cities as they exist today. This indicates that, though the non-
OECDs generally appear fairly early in their adoption of cooling
and heating systems, the manner in which those cities develop



Fig. 8. Electricity usage for cooling and heating as fraction of total electricity usage.
could have very significant implications for the trajectory of their
energy usage.

The results of this studyand the analytical approachdeveloped to
arrive at those results, provide a strong foundation for further
research in urban energy studies. Resource management in rapidly
urbanizing areas may prove even more challenging where peak
electricity demands are far higher than average demands, and the
economic landscapeof suchanelectricity regimemayprovide either
unique opportunities for or particular difficulties in integrating
renewable energy resources. Further research is also needed to
understand why the cities across our spectrum behave as they do.
We have identified factors that may contribute to the energy usage
and demands of OECD cities; quantifying these effects could help
better project future non-OECD cities' energy requirements and
inform urban infrastructure planning in these areas.
Delhi DISCOM to District Mapping.

DISCOM Districts
NDMC New Delhi
MES Military
BRPL W-SW-S
BYPL NE-E-Central
NDPL NW-N
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Appendix A. Supplementary data

The following is the supplementary data related to this article:
All data and analysis used in this study are available online at

https://github.com/ecohen4/energy. We encourage readers to fork
the repository and contribute to the open-source research com-
munity via pull requests.

https://github.com/ecohen4/energy


Fig. A1. Temperature and dew point variation by city. Boxes show interquartile range (with vertical line indicating mean value); horizontal lines indicate full range of data.

Table A1
Data sources summary

City Country Load Weather Population

Abidjan Cote d'Ivoire 2010e2013 (a) 2010e2013 (l) 1990e2030 (m)
Accra Ghana 2013e2014 (b) 2010e2013 (l) 1990e2030 (m)
Amman Jordan 2011e2014 (c) 2010e2013 (l) 1990e2030 (m)
Antigua Antigua and Barbuda 2011e2011 (d) 2010e2013 (l) e

Beirut Lebanon 2011e2014 (e) 2010e2013 (l) 1990e2030 (m)
Chandigarh India 2011e2013 (d) 2010e2013 (l) 1990e2030 (m)
Chattanooga U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Colorado Springs U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Dakar Senegal 2011e2014 (f) 2010e2013 (l) 1990e2030 (m)
Delhi India 2012e2013 (e) 2010e2013 (l) 1990e2030 (m)
Detroit U.S. 2006e2008 (r) 2006e2008 (l) 2006e2008 (s)
El Paso U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Eugene U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Honolulu U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Indianapolis U.S. 2006e2008 (r) 2006e2008 (l) 2006e2008 (s)
Kano Nigeria 2014 (d) 2014 (l) 1990e2030 (m)
Kupang Indonesia 2013 (d) 2013 (l) 2011 (o)
Los Angeles U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Manila Philippines 2011e2013 (g) 2010e2013 (l) 2010e2015 (n)
Mbabane Swaziland 2012e2014 (h) 2010e2013 (l) 2010 (o)
Nairobi Kenya 2011e2013 (i) 2010e2013 (l) 1990e2030 (m)
New York City U.S. 2007e2012 (d) 2007e2012 (l) 2007e2012 (p)
N. Little Rock U.S. 2010e2013 (r) 2010e2013 (l) 2010e2013 (s)

(continued on next page)
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Table A1 (continued )

City Country Load Weather Population

Omaha U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Philadelphia U.S. 2009e2011 (q) 2009e2011 (l) 1990e2030 (m)
Sacramento U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
San Diego U.S. 2012e2013 (r) 2012e2013 (l) 2012e2013 (s)
Singapore Singapore 2013e2013 (j) 2010e2013 (l) 1990e2030 (m)
Springfield, IL U.S. 2011e2013 (r) 2011e2013 (l) 2011e2013 (s)
Tacoma U.S. 2006e2013 (r) 2006e2013 (l) 2006e2013 (s)
Tokyo Japan 2008e2014 (k) 2010e2013 (l) 2008e2014 (k)

Personal Communications: (a): Autorite Nationale de Regulation du Secteur de l'Electricite, (b) Ghana Grid Company, (c) National Electric Power Company, (d) Sustainable
Engineering Lab, (e) Electricite Du Liban, (f) Senelec, (g) Philipine Electricity Market Corporation, (h) Swaziland Electricity Company, (i) Kenya Power and Lighting Company, (j)
Energy Market Authority, (k) Tokyo Electric Power Company; (l) NOAA 2014 [73]; (m) World Urbanization Prospects e 2014 [68]; (n) NSCB 2015 [74]; (o) UN Data [9]; (p) US
Census Bureau [75]; (q) PJM [76]; (r) FERC [77]; (s) EIA [78].

Table A2
Per capita cooling electricity response and electricity usage for cooling by city (average of all years). Cities listed in ascending order by cooling response.

City Threshold temperature Cooling electricity response W/(�C-capita) Estimated cooling electricity usage kWh/(capita-yr)

Mbabane 13 0 4.09
Nairobi 14 0 0
Kano 15 0.5 (a)
Abidjan 23 1.67 53
Dakar 19 2.23 145
Accra 24 2.83 144
Manila 25 3.86 69.8
Beirut 22 4.45 (a)
Delhi 21 5.04 370
Delhi - BYPL 21 6.22 434
Delhi - NDPL 22 6.4 438
Antigua 23 6.74 188
Delhi - MES 25 9.19 517
Chandigarh 20 9.6 478
Delhi - BRPL 22 10.49 569
Singapore 25 13.34 246
Honolulu 21 13.8 662
San Diego 12 18.15 (a)
Los Angeles 12 31.33 876
New York City 15 37.23 861
Delhi - NDMC 22 39.61 1579
Colorado Springs 17 40.39 628
Amman 18 45.72 1257
Tokyo 18 46.81 718
Tacoma 14 49.2 537
El Paso 19 52.56 1481
Philadelphia 21 58.5 1186
Eugene 12 64.95 737
Detroit 18 67.36 894
Sacramento 20 87.21 1100
Indianapolis 16 94.96 2194
Omaha 19 100.9 1880
Springfield, IL 20 109.9 2334
North Little Rock 22 120.6 2927
Chattanooga 18 141 3783

(a) Cooling electricity usage estimates not possible for cities without both cooling and heating responses.

Table A3
Timing andmagnitude of peak electricity demand and estimated contribution from cooling. Cities listed in ascending order by contribution of cooling to overall peak electricity
demand.

City Date Hour Temperature (�C) Peak elec. demand (MW) Estimated peak cooling demand (MW) % Peak demand for cooling

Mbabane 2013-07-12 10 19 21.83 0 0
Nairobi 2013-11-14 20 27 724.4 0 0
Tacoma 2013-03-01 19 14.2 640 4.24 0.66
Singapore 2013-06-25 14 27 6804 144.3 2.12
Antigua 2011-06-29 12 29 50.75 3.38 6.66
Accra 2014-01-16 21 28.5 541.4 39.97 7.38
Kano 2014-08-29 2 27.14 267 21.86 8.19
Honolulu 2013-10-28 20 29.4 1162 111.8 9.62
Beirut 2014-07-24 1 26 553.2 59.4 10.74
Abidjan 2013-03-12 21 28.2 635.3 77.17 12.15
San Diego 2013-08-30 15 25.6 4604 711 15.44
Dakar 2014-10-28 22 28 507.2 80.49 15.87
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Table A3 (continued )

City Date Hour Temperature (�C) Peak elec. demand (MW) Estimated peak cooling demand (MW) % Peak demand for cooling

Manila 2013-05-07 13 31.37 8237 1509 18.32
Delhi - NDPL 2012-06-22 16 36.5 1481 349.1 23.57
Delhi 2012-07-05 15 34 5360 1290 24.07
Chandigarh 2013-06-06 14 28.27 352 87.49 24.86
Delhi - BYPL 2012-07-05 15 34 1269 359.8 28.36
Delhi - NDMC 2012-07-04 15 32 351.6 110.1 31.32
Los Angeles 2013-09-05 17 32.2 5862 2049 34.96
Delhi - MES 2012-07-04 13 34 44.61 15.89 35.62
Detroit 2008-07-16 16 30 11011 3957 35.93
Colorado Springs 2013-06-27 16 33.3 883 334.4 37.87
Delhi - BRPL 2012-07-02 16 36.5 2311 920.7 39.85
Philadelphia 2011-07-22 13 33.7 8984 4027 44.83
Tokyo 2014-08-05 14 29.4 49800 22552 45.28
New York City 2012-07-18 14 30.1 11112 5043 45.38
Omaha 2013-08-29 17 33.9 2351 1070 45.52
Amman 2014-08-26 15 31 1507 697 46.27
El Paso 2013-06-27 16 33.3 1750 822.7 47.01
Springfield, IL 2013-06-27 16 32.8 721 339.2 47.05
Sacramento 2013-07-03 18 33.3 3014 1493 49.54
North Little Rock 2013-06-27 17 35 249 139 55.84
Eugene 2013-07-01 18 26.95 366 210.5 57.5
Chattanooga 2013-07-17 17 32.8 1115 658.4 59.05
Indianapolis 2008-09-02 16 31.7 2858 1766 61.79

Table A4
Per capita heating electricity response and estimated electricity usage for heating by
city (average of all years). Cities listed in ascending order by heating response.

City Threshold
temperature

Heating electricity
response W/(�C x
Capita)

Estimated heating
electricity usage kWh/
(capita x yr)

Abidjan 23 0 0
Accra 24 0 0
Antigua 23 0 0
Dakar 19 0 0
Kano 15 0 0
Honolulu 21 0 0
Manila 25 0 0
San Diego 12 0 0
Singapore 25 0 0
Los Angeles 12 0 10.1
Delhi - BYPL 21 0 17.7
Delhi 21 0 18.8
Delhi -

NDMC
22 0 93.5

Beirut 22 0.3 (a)
Nairobi 14 0.38 0.25
Delhi - NDPL 22 0.77 21.1
Delhi - BRPL 22 0.99 31.5
El Paso 19 2 134
Chandigarh 20 2.12 36.1
Mbabane 13 3.64 8.48
New York

City
15 4.61 205

Detroit 18 5.66 447
North Little

Rock
22 5.8 529

Delhi - MES 25 7.05 97.3
Sacramento 20 7.75 321
Colorado

Springs
17 7.76 497

Springfield,
IL

20 8.54 833

Omaha 19 10.76 941
Philadelphia 21 11.11 676
Tokyo 18 16.18 570
Indianapolis 16 28.02 1535
Amman 18 28.3 470
Chattanooga 18 44.63 1618
Tacoma 14 45.09 2113
Eugene 12 53.29 1674
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