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1 The International Energy Agency estimates that the

have access to electricity is nearly 1.6 billion and this n
over the next 30 years unless investments in providin
expanded significantly.
a b s t r a c t

We describe the first heuristic algorithm that selects the locations and service areas of transformers with-
out requiring candidate solutions and simultaneously builds two-level grid network in a green-field set-
ting. The algorithm we propose minimizes overall cost of infrastructure costs; specifically the
combined costs of transformers and the two-tiered network together by solving transformer location
problem as well as network design problems in a single optimization framework. In addition, it allows
one to specify different costs for the higher throughput lines upstream of the transformer as compared
to downstream of the transformer. Simulations are carried out based on real-world spatial distributions
of demand points from rural locations in Africa, specifically in places without any pre-existing infrastruc-
ture to test the algorithm and generalize the results.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In a technological landscape that is altered by the emergence of
off-grid and distributed approaches, there is a need amongst infra-
structure planners to evaluate the costs of networked or grid ap-
proaches vis a vis off-grid approaches to be able to make rapid
assessment of the progress in rural electrification.1 The investment
costs of networked approaches are more difficult to estimate than
the costs of off-grid approaches because it takes into account both
the spatial distribution of demand and the optimal placement of
infrastructure to meet that demand. This paper through its algorithm
provides a new methodology to estimate the cost of green-field net-
works rapidly and with high accuracy.

The algorithm we present in this paper combines the trans-
former location problem and the low voltage (LV) and medium
voltage (MV) network design problem into a single problem and
solves them in a single optimization framework. We propose a
heuristic algorithm to design a two-level radial power distribution
system. The first level includes the determination of the numbers,
locations and capacities of transformers that feed an LV distribu-
tion network. The transformers represent load points for an
ll rights reserved.
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number of people who do not
umber is expected to increase
g modern energy services are
upstream MV network and the MV network is also determined
as a part of the first level. The second level includes the determina-
tion of the layout of the low voltage network between the trans-
formers and the specified ultimate demand points. Note that the
high voltage (HV) network (for that matter source points) further
upstream of the MV network are assumed to be known.2 One could
have further generalized the problem to include the determination
of the HV networks as well, making it a three level problem, but here
we consider the HV network as pre-specified for simplicity.

The algorithm we propose does not require a set of candidate
locations to be considered as transformer locations. The maximum
service distance in a low voltage distribution network is also pre-
specified and determined from engineering practice. Given these
costs, the demand points, the location of the HV network, and
the maximum distance of the demand point from the transformer,
the algorithm automatically finds the locations and service areas
transformers as well as the LV and MV network layout with the
goal of minimizing the total costs.

Understanding the cost involved with electrification is impor-
tant in designing a proper smart grid structure. This algorithm
can serve as a tool for network engineers and planners to make ra-
pid assessments assisting them with (a) estimates of total cost of
distribution, (b) layouts of initial designs and (c) breakdown of
2 The medium voltage network connects these transformers to electricity sources
further upstream where they could either be sub-stations of a high voltage
transmission network or power generating stations. Note that the costs associated
with what we call here for convenience high voltage networks or transformations
from high voltage to medium voltage are not considered here.
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3 This distance would vary over the network with local geography and topography
but is assumed constant here.

4 Lmax can also be considered as a constraint on distribution losses in LV level as the
losses and wire lengths are linearly related.
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total costs into transformer cost and medium and low voltage line
costs and giving them a good starting point for more detailed smart
grid projects. The methodology we propose ignores transmission
losses, load flow considerations and local topography and hence
the proposed designs are not meant to replace detailed engineering
analyses of grid rollout. Therefore, this tool should be considered as
a guide for planning within utilities to be used with large datasets
rather than a tool that provides every detail. However, for com-
pleteness possible extensions of the algorithm to include more de-
tails of power distribution systems are also discussed in Section 5.4.

The sections of this paper are outlined as follows: the remainder
of this section provides background information including litera-
ture review; a more precise statement of the problem is given in
Section 2; our approach to the problem is explained in Section 3;
algorithm results are provided in Section 4; and a discussion of
our algorithm is presented in Section 5.

1.1. Background

Electricity access is one of the most important components of
rural developments. It has been shown that better living conditions
in developing countries cannot be achieved without investments in
electricity [1]. In rural areas where renewable energy resources are
widely available, small off-grid standalone systems appears to be
an attractive alternative [2]. Moreover, decentralized technologies
seems to be more suitable for rural and remote areas due to the
fact that it helps avoid long distribution lines with low load densi-
ties, underutilized transformers and losses in distribution. It also
has been discussed that whether decentralized alternatives which
use locally available resources provide more reliable supply of en-
ergy [2,3]. Thus, most of the earlier research aims to investigate
primarily renewable energy alternatives and off-grid technologies
[4–9]. It is worth noting that, although there has been a lot of
attention to rural electrification projects, literature on the net-
worked approaches is very limited. In this paper, an attempt is
made on estimating the cost of rural networks to facilitate the rural
energy decision making based on purely cost comparison without
considering other consequences of off-grid and grid approaches.

The so-called power distribution system problem, in general,
has been studied extensively in the literature [10–19]. Techniques
developed in prior efforts for this complex problem usually divide
the problem into sub-problems at each level and then solve each
sub-problem separately using various optimization techniques
[10–14]. These studies differ from each other in how they repre-
sent the problem components as well as in the algorithms utilized.
None of these studies address the problem of designing both LV
and MV networks in a single framework. However, dividing the
problem into sub-problems and solving them separately reduces
the probability of reaching an optimal solution and prevents us
from seeing the effects of different cost parameters on the final
network layout. The methods that have been proposed in the liter-
ature are based on either mathematical programming techniques
such as Mixed Integer Programming, Branch and Bound Method
[12,13,17] or heuristic algorithms such as Genetic Algorithm
[11,18,19]. However, complexity of the models and the algorithms
reduces their applicability to estimate the cost of networked ap-
proaches in rural electrification discussions when spatial distribu-
tion of a very large data set (demand points) is available. In
addition, regardless of the solution methods, all studies mentioned
here, except for [11], includes pre-assumption of candidate loca-
tions for transformers or feeders. These studies do not provide a
method to update the candidate transformer locations during the
search for an optimum solution. Therefore, the final feeder network
is strictly dependent upon the initial selection of candidate loca-
tions. In practice, however, determination of candidate locations
is not always a simple task, and if the methodology has to scale
to a larger number of demand points, clearly the transformer loca-
tions should be an outcome of the optimization process.
2. Problem statement

Locations of ultimate consumers are called ‘‘demand points’’ in
the rest of the paper. The cost parameters are (1) the cost per meter
of LV line, CLV; (2) the cost per meter of MV line, CMV; and (3) the
unit cost of a transformer, CT. The maximum service distance, mod-
eled as the radius of coverage of a transformer, is specified3 and
called Dmax. No similar constraint is placed on the length of the
MV line from the source point. The unit costs are assumed to not
vary with load, a clear simplification of the reality. In the same vein,
each demand point is assumed to have the same load and the load is
assumed not to change over time making the problem ‘‘static’’.

Distribution system is designed to be radial, to have one path
between demand points and transformers, due to the fact that it
is the most widely used form of distribution design and it is the
cheapest and the simplest alternative compared to loop and net-
worked designs [20]. In radial design, since there is only one path
between demand points and transformers, power flow is certain
and the system can be operated easily. The major drawback to ra-
dial feeder design is reliability. Any equipment failure will inter-
rupt service to all customers downstream from it. However, low
statistical rate of failure of equipment on the low voltage level
makes the adaptation of radial systems easier [12].

Within the service areas of the transformers, the low voltage
network is permitted to be multi-point, in that, in order to mini-
mize costs the wire to a demand point further in distance can first
go through one or more intermediate demand points. This archi-
tecture is called a ‘‘multi-point’’ LV network here (see Fig. 1b).
Maximum distance capacity of an LV line is then defined as another
design parameter and called Lmax (i.e. the maximum LV line used to
connect a demand point to the transformer directly or through
other demand points should be less than Lmax

4). Lmax value should
be used to limit the maximum total load on LV line and should be
greater than or equal to Dmax so that each demand point within
the service area of a transformer gets connected.

Given the cost parameters and subject to the constraints de-
scribed above, the desired outputs of the algorithm are:

� Number and locations of the transformers.
� Medium voltage (MV) network that connects a source point to

the transformers; and
� Low voltage (LV) network between the demand points and

transformers.

Our objective function is the minimization of total system cost,
which includes cost of transformers, cost of low voltage and med-
ium voltage networks. Schematic illustration of our problem for-
mulation can be seen in Fig. 2.
3. Methodology

Given the difficulty of the problem, a heuristic algorithm is
developed to place transformers and locate the networks. The algo-
rithm relies on a ‘‘greedy’’ approach that starts with a stage that
each demand point has one transformer (i.e. for n demand points,
there would be n transformers) and iteratively decreases the
number of transformers. Initially, transformers are connected to



Fig. 1. Examples network configurations: (a) Point to point network (star config-
uration). (b) Multi-point network.
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a prescribed single source point and to each other with a least cost
medium voltage network; there is no LV network at this stage. The
cost of this design is computed and provided as an initial upper
bound to the cost of the network design since it is a feasible solu-
tion to the problem. It contains the maximum possible number of
transformers and maximum length of MV line (which per unit
length is more expensive than LV line). Then, one begins the
process of eliminating transformers one at a time while removing
some of the MV lines and adding new LV lines in the process to find
a least cost network. The algorithm consists of the repeated appli-
cations of the following iterations:

� Search for the closest pair of transformers which can be
replaced by a single transformer located at the centroid (center
of mass) of the demand points without violating, Dmax

constraint.
� Build the MV network between the updated set of transformers

and the source point (see Section 3.2 for details).
Fig. 2. Illustration of powe
� Build the LV network between the demand points that are no
longer served directly by transformers using LV line, ensuring
constraint Lmax (see Section 3.3).
� Compute the new overall cost.

The heuristic algorithm continues this iterative process until
the number of transformers cannot be reduced any further without
violating the Dmax constraint (note that the solution with the least
number of transformers is not necessarily the least cost since the
design with the least number of transformers may have been ob-
tained by adding more LV line length, and this trade-off may not
be favorable to the total cost).

At this stage, all the computed costs during the transformer
elimination process are compared and the least cost network de-
sign is selected. With one transformer replacing a ‘‘pair’’, and pro-
cess repeated, one can think of the sets of demand points being
served by one transformer as a ‘‘cluster’’. With this perspective
the algorithm is an agglomerative algorithm, using a bottom-up
approach to iteratively agglomerate (merges) the closest pair of
points (see Section 3.1 for details).

The algorithm is further analyzed in its three components; (i)
selecting the transformers to be removed, (ii) creating a MV net-
work among the transformers and (iii) connecting the demand
points and the transformers with an LV network. A flow chart of
the algorithm can be seen in Fig. 3.

3.1. Locating the transformers

A capacitated agglomerative hierarchical clustering method is
adapted to find the locations of transformers since it does not re-
quire pre-selected candidate locations for transformers. Note again
that this is different than most of the work in the literature and is a
must for our target demand points, households in rural Africa with
little or none existing infrastructure.
r distribution system.



Fig. 3. Flow chart of the algorithm.
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An agglomerative hierarchical clustering method starts with as
many clusters as the number points to be clustered. At each step,
the clusters are merged according to a rule and eventually only
one cluster remains where all points are connected. In contrast, a
capacitated agglomerative hierarchical clustering method has no
assumption on the final number of clusters [21] and finds the min-
imum possible number of clusters that can be achieved with the gi-
ven constraints. In clustering methods, many rules can be used
depending on the problem definition. In our problem, to be able
to incorporate the Dmax conveniently, the closest pair based on
the Euclidean distance between transformers has higher priority
to be merged. The applications of clustering methods on similar
problems using Euclidean distance can also be seen in [21–25].
Here, as opposed to stopping the process when the best possible
agglomeration violates the capacity constraint (infeasible) [22],
we choose the next best feasible agglomeration (if there exists
one) as proposed by [24].

An illustrative example of our agglomerative clustering ap-
proach is presented in Fig. 4. In this example, we have five demand
points and Dmax is 2. Fig. 4a represents the initial configuration and
Fig. 4b–d shows how the closest pairs of transformers which do not
violate the capacity condition are connected one by one. No further
change is possible in Fig. 4d since the agglomeration of the final
two clusters would violate the Dmax constraint.
5 Since there is no constraint on the maximum length of MV line, the least cost
solution is simply the least total length.
3.2. Medium voltage line layout

At any iteration, when transformer locations are known, the
problem is to find the least cost layout that connects the trans-
formers and the given source point. This can easily be solved by
using the well-studied Minimum Spanning Tree (MST) algorithms
[26–29] which aim to find a tree (i.e. network containing no cycles)
that spans all the points minimizing the total length of the net-
work5 with the guarantee of the exact optimal solution [29]. For
the problem at hand, the points represent the transformers and
the source point. Hence, goal is to find an MST such that all trans-
formers and the source point are connected. Although there are dif-
ferent MST algorithms in the literature; in this paper, Prim’s
algorithm [26] is implemented as it has better running time perfor-
mance for dense sites [30].

Prim’s MST algorithm starts with choosing a starting point and
adds the shortest segment of this point to the network. Until all
nodes are spanned, the shortest segment emanating from the
existing points on the network is added. The connections that
would create cycles are avoided. Prim’s algorithm is illustrated
on an example in Fig. 5 on an example with one source and four
transformers. We note that since the MST algorithm finds the opti-
mal network, changing the starting point will not affect the result
as all starting points will end up with the same network.
3.3. Low voltage line layout

As ‘‘clusters’’ emerge during each iteration cycle, an LV network
needs to be laid out within each cluster. The total length of the con-
nections is minimized while ensuring that the length of LV line be-
tween a transformer and the demand points are always less than a
given Lmax value.



Fig. 4. Agglomerative clustering example: (a) Initial configuration where each demand point has one transformer. (b) The closest pair (1 and 2) gets connected. (c) Next
closest pair is 1 and 3. (d) 4 and 5 are connected and no further change is possible without violating Dmax constraint.
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Constructing a least cost multi-point network (cost efficient
compared to star configuration, see Fig. 1) is similar to the Mini-
mum Spanning Tree (MST) problem, but with an additional Lmax

constraint. This extra condition converts the problem into a capac-
itated minimum spanning tree (CMST) problem. CMST is a minimal
cost spanning tree which has a designated root (transformers) and
a capacity constraint which ensures that the length of a sub-tree
incident on the root does not exceed a certain distance (Lmax). This
problem is well studied for its applications to centralized commu-
nication design. Unlike MST, CMST cannot be efficiently solved in
polynomial time. However, Essau and Williams [31] and Sharma
and El-Baradi [32] developed heuristic algorithms to solve the
CMST problem and Chandy and Russell [33] showed that these
heuristics find near optimal solutions within 10% (often 5%) of
the optimal solution.

Essau–William’s heuristic algorithm is implemented in order to
get the least total length LV layout within each cluster. A CMST
algorithm starts with connecting all demand points to the trans-
formers using the star configuration. The procedure to go from star
configuration to a multi-point configuration is simply the succes-
sive iterations of calculating the trade-off values from removing
the direct connections between the demand points and the trans-
former, as well as, adding indirect connections through their
neighbors. At each iteration, the trade-off value is computed for
every demand point and the largest trade-off value (i.e. the great-
est improvement) that does not lead to a violation of the Lmax con-
straint is used to update the network. The algorithm terminates
when there is no further improvement possible.

An example of CMST algorithm with Lmax value of 5 is presented
in Fig. 6. It starts with the star configuration in Fig. 6a, and con-
structs the multi-point connections in Fig. 6b–d until there is no
further change possible with the given Lmax. Notice that although
the trade-off value of point 1 is greater, its direct connection to
the transformer is not removed due to the constraint.
4. Results on some Sub-Saharan Africa sites

The algorithm has been tested on household level data from
nine sites in Sub-Saharan Africa shown in Fig. 7. The data were dig-
itized from QuickBird satellite imagery of sites; details of the dig-
itization method are discussed in [34]. For most of the sites, a
QuickBird image covers an area of 10 � 10 km2 which covers a
large representative area. Even though all structures do not neces-
sarily correspond to households, we assume that each structure
represents a demand point which needs to be electrified.

In rural electrification programs, the clusters of demand points
and loads are small, so we use representative costs corresponding
to the typical small 25 kVA transformer [35,36]. Cost parameters
and other constraints consistent with rural electrification practice
[37–40] are assumed to be:

Dmax = 500 m.
Lmax = 600 m.
CLV = $10/m.
CMV = $25/m.
CT = $5000

In Table 1, statistics and the outcome of our algorithm are
shown for all sites. These results can help network engineers and
planners estimate the number of transformers and the LV, MV line
lengths easily for a particular location. In addition, by using our
algorithm, they can also quantify their empirical observations.
For example, from Fig. 7b–e, Mbola seems more dispersed than
Bonsaaso (both have around 1000 households). Therefore the
dynamics of their networks are expected to be different by obser-
vation. The algorithm indeed outputs 90 transformers for Mbola
and 18 for Bonsaaso, and, the cost per household is more than
2.5 times for Mbola than for Bonsaaso. Similarly, Tiby (Fig. 7c)
seems highly nucleated and this leads to shorter (cheaper)



Fig. 5. A five-point (four transformers and a source point) example of Prim’s algorithm: (a) S is the starting point and S–T1 is the shortest segment emanates from S. (b) S–T2
is the shortest segment to the existing network without creating loops. (c) T2–T3 is the next. (d) Finally T2–T4 gets connected and the MST is complete.
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connections. Hence, from the algorithm results; Tiby has $691 cost
per household which is the cheapest among all sites tested.

From the test results, it is also possible to reach some general-
ized conclusions. For all sites, overall transformer costs are be-
tween 8% and 15% of the total cost. In addition, for sites that has
1000–2500 household for 100 km2, the bulk (�60%) of the total
cost is composed of MV voltage lines. In the dense sites (Ruhiira,
Mayange and Mwandama), there is a greater number of house-
holds per transformers and the total cost of LV line is comparable
or even higher than the total cost of medium voltage lines despite
the fact that the MV line is more expensive than LV line.

Furthermore, as a result of the rural electrification programs,
some of the sites such as Mwandama, Pampaida and Mbola have
already partial existing grid. When we compare our medium volt-
age network with the existing medium voltage line in these sites,
we observe a highly good match. In Fig. 8, the overlap between
the existing grid and the proposed grid is shown. This indicates
that the planners may benefit from our algorithm in estimating
the network structure and related costs also for these sites where
there is an existing partial network.
5. Discussion

In this section, we first assess the sensitivity of the proposed
networks in terms of the cost parameters for LV, MV lines and
transformers (Section 5.1). This analysis can be significantly useful
for policy planners to estimate the total cost fluctuations due to
individual cost parameters. Next, considering that the complexity
and the noise in the real data from Sub-Saharan Africa may compli-
cate the understanding of our results, we also test our algorithm on
simplified (simulated) datasets (Section 5.2) and see that we get
consistent results for the artificial data. Then, we compare our
algorithm with a sequential approach (Section 5.3) to see the rela-
tive performance and finally, we discuss the limitations and possi-
ble extensions of the algorithm for more detailed planning of
power distribution systems and other parts of infrastructure prob-
lems such as siting of health or educational facilities (Section 5.4).
5.1. Network sensitivity analysis in terms of cost parameters

In our base case results, the cost parameters; CLV, CMV, CT; are
chosen as $10, $25 and $5000 respectively. We perform a sensitiv-
ity analysis to understand whether there is a drastic change in the
final network due to slight movements in these cost parameters.
For the sake of generality, we present the general behaviors of
the algorithm on uniformly distributed randomly generated points
(1000 demand points on 10 � 10 km2). At the end, we also present
several runs of the algorithm on the data from Sub-Saharan Africa
and verify the generalizations in real datasets.
5.1.1. Analysis with MV and LV line costs
First, we define a ratio, p, between cost parameters of MV and

LV lines (i.e. p = CMV/CLV). When the transformer cost parameter,
CT, is set to zero, the differences in final networks help us under-
stand the sensitivity of final network design to the ratio between
cost of MV and LV lines. Initially every demand point has one trans-
former; therefore maximum amount of MV and zero LV lengths are
used in the system. Fig. 9 shows how the total length of MV and LV
lines change as the algorithm reduces the number of transformers
from number of demand points to the minimum number of trans-
formers subject to Dmax constraint.

In Fig. 10a, we show the change in number of transformers as
the p ratio is increased from 1 to infinity. We interestingly observe
that there is a critical value p⁄ such that for all values less than p⁄

one transformer for each demand point (maximum number of
transformer case) is the minimum cost design. For other values,
greater than or equal to p⁄, the solution includes almost the mini-
mum possible number of transformers without violating the max-
imum distance (Dmax) constraint between demand points and
transformers. Here, the critical p value (p⁄) is observed around 1.70.



Fig. 6. A seven-point example of Essau–William’s CMST algorithm: (a) Initial star configuration. (b) Maximum trade-off value is for Point 1 (2.23) however it violates Lmax.
Point with the next best trade-off value (Point 2) is selected. (c) Next best trade-off value is for Point 6. (d) Final configuration is reached after Point 4 is connected.

Fig. 7. Demand point locations for nine Sub-Saharan Africa sites digitized from satellite imagery.
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To understand this sudden change further, we need to think
about how the algorithm works in each step. The total cost is given
by the following equation:

Total Costi ¼ CT � iþ CMV �
X

MVLengthi þ CLV �
X

LVLengthi

And when we assume there is no transformer cost, it becomes

Total Costi ¼ CMV �
X

MVLengthi þ CLV �
X

LVLengthi

The algorithm compares the total cost values in determining the
number of transformers. Therefore, the only way to decrease the
number of transformers is if Total Costi 6 Total Costj, where i < j.
This means

CMV �
X

MVLengthi þ CLV �
X

LVLengthi

6 CMV �
X

MVLengthj þ CLV �
X

LVLengthj

and

p
X

MVLengthj �
X

MVLengthi

� �

P
X

LVLengthi �
X

LVLengthj

� �

Here, for small p values, the change in the transformer number is
not profitable because it also makes LV longer and cost of the LV
is not cheap enough to make above equation hold (see the black
(darkest) line in Fig. 10d). Then algorithm results in one transformer
for each demand point. However, after a critical p value (p = 1.70 in
Fig. 10a) cost saving becomes possible by decreasing number of
transformers within the allowed configurations. Once the algorithm
favors less number of transformers, for all higher p values it goes all
the way down to the minimum number of transformers subject to
the Dmax constraint because decrease in the MV length is faster than
the increase in LV length; the fewer the number of transformers the
less total cost (see Fig. 10b).

We perform the same analysis for some of the Sub-Saharan Afri-
can sites and again obtain similar results; most notably, a sudden
drop in the number of transformers. Table 2 summarizes the re-
sults. We observe that p⁄ differs based on the number of demand
points and their spatial distributions. For example, for clustered
sites (Bonsaaso and Ikaram) p⁄ value is smaller than the rest of
the sites and p⁄ is highest for Mbola which is known with its dis-
persed settlement pattern. Since p⁄ is actually the ratio between
the changes in LV and MV as the algorithm proceeds, it is expected
to have smaller ratios for clustered sites where the decrease in to-
tal MV line is much faster than the increase in LV line for small
number of transformers. Moreover, when Dmax is set to 750 m,
algorithm finds less number of transformers than the 500 m case
and the sudden drop point is observed at smaller p⁄ values as
expected.

5.1.2. Analysis with LV line and transformer costs
To be able to see the effect of transformer cost on the final net-

work design, another ratio between CT and CLV is defined here as
q = CT/(CLV � Dmax) and the cost of MV line is set to zero (since the
cost contributions from CT and CMV are in the same way). Unlike
the p ratio, Dmax is introduced in the q ratio to make it
dimensionless.

The total cost is given by

Total Costj ¼ CT � jþ CLV �
X

LVLengthj

To be able to decrease the number of transformers

Total Costi 6 Total Costj

CT � iþ CLV �
X

LVLengthi 6 CT � jþ CLV �
X

LVLengthj



Fig. 8. Match between proposed network and existing grid. Proposed transformers, LV and MV networks compared to partial existing grid. Algorithm outputs 90 transformers
for 1175 demand points.

Fig. 9. Change in total length of MV and LV lines. As the algorithm decreases the
number of transformers for 1000 uniformly distributed randomly generated
demand points data within a 10 � 10 km2 area, total MV line length decreases,
while total LV line length increases.
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X
LVLengthi �

X
LVLengthj

� �
6 qDmaxðj� iÞ

This time there is no sudden change and the number of trans-
formers decreases gradually as q increases (Fig. 11a). The S-shaped
behavior is due to the fact that closer nodes are connected first so
the cost from LV length is initially smaller and the total cost is
more sensitive to the change in transformer cost.

5.1.3. Analysis with all cost parameters
In Figs. 10c and 11b, we looked at more realistic cases where all

the cost parameters are present. Fig. 10c shows p ratio analysis for
different q values. For high q values, effect of S-shaped behavior of
q dominates the sudden drop effect of p and we observe higher crit-
ical p values for small q values. In Fig. 11b, q ratio analysis with dif-
ferent p values is presented and for high p ratios the sudden drop
effect of p ratio dominates the smooth decrease effect of q ratio.

In conclusion, depending on the price changes the design with
minimum cost may change drastically. For the values (p = 2.5,
q = 1) that we use for calculating the grid in the nine Sub-Saharan
Africa sites, network generated by our algorithm is not sensitive.
However, policy makers can use our algorithm as a tool to under-
stand whether or not there is a possible design change with future
prices.

5.2. Testing of algorithm on simulated data

Our results for African sites are specific to each site because all
sites have different number of demand points and spatial distribu-
tion patterns. The noise and the variety in the data from Sub-
Saharan Africa sites can make it difficult to draw conclusions from
the results of the algorithm. This is why we test our algorithm on
simulated data which provide more intuitive sense of what results
would be. Same cost parameters and constraints are used for the
base case run of simulated data (CLV = 10, CMV = 25, CT = 5000,
Dmax = 500, Lmax = 600).
5.2.1. Multivariate normally distributed randomly generated data
We present six 10 � 10 km2 artificial sites with 1000 demand

points that are randomly generated using multivariate normal dis-
tribution (generalization of Gaussian distribution in two dimen-
sions). To filter out the noise, we stretch out the points in two
dimensions by increasing standard deviations of the multivariate



Fig. 10. Network sensitivity analysis: (a) The sudden change in the number of transformers as the ratio between CMV and CLV cost parameters increases. (b) Change in total MV
and LV lengths from the 1000 transformer case. (c) The change in the number of transformers for different q ratios as p ratio increases (see Section 5.1.2 for q). (d) The
difference between the curves in b with MV weighted with different p ratios.
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normal distribution (from 250 to 1500). The generated sites are
shown in Fig. 12a–c and e–g, and the results are presented in
Fig. 12d and h. As expected, the number of transformers goes up
with higher standard deviation (Fig. 12d) and as the number of
transformers increases, the total MV line used increases, while
the total LV decreases consistently (Fig. 12h).
5.2.2. Uniformly distributed randomly generated data
Next, we present six different sized areas (4 � 4, 6 � 6, 8 � 8,

10 � 10, 12 � 12, 14 � 14 km2) with again 1000 demand points
that are generated randomly using uniform distribution (i.e. the
likelihood of generating a demand point on any point of the site
is same). Since these sites have different areas but the same num-
ber of points the mean distance between demand points is the
highest for 14 � 14 km2 site and decreases as the site area gets
smaller. The generated sites are presented in Fig. 13 and the results
are summarized in Fig. 14.

To facilitate the quantitative comparison between sites, we re-
fer to ‘‘average nearest distance’’ defined by Clark and Evans [41].
We calculate the average nearest distance using a Geographic
Information System (GIS) tool for each different sized site and they
are shown in the x-axis of Fig. 14a and b (60 for the densest site
(4 � 4 km2), around 260 for the largest site (14 � 14 km2)). Due
to the lower number of demand points within the radius of Dmax,
number of transformers increases almost linearly (Fig. 14a) as
Table 2
Critical p⁄ ratio for some of Sub-Saharan sites.

p� Dmax ¼ 500 m
Drop

Ratio p� Dmax ¼ 750 m
Drop

Ratio

From To From To

Bonsaaso, GHANA 1.20 993 18 0.018 1.18 993 17 0.02
Ikaram, NIGERIA 1.31 1484 35 0.024 1.27 1484 30 0.02
Pampaida, NIGERIA 1.64 1570 288 0.183 1.63 1570 67 0.04
Mbola, TANZANIA 1.74 1169 93 0.080 1.64 1174 61 0.05
Random1000 1.70 1000 169 0.169 1.54 1000 91 0.09
the average nearest distance increases (same total number of de-
mand points, same Dmax) and when we keep the ratio between
the average nearest distance and the Dmax same, we obtain the
same number of transformers for each site (Fig. 14b).

In addition, we also test our algorithm on the same sites setting
the Dmax to various numbers between 50 and 1000 and present the
results in Fig. 14c. As expected, the number of transformers in-
creases as the Dmax decreases and converges to the number of de-
mand points. This is in general more sensitive in the dispersed
areas making the slope steeper (slope in Fig. 14a) for lower Dmax

values.

5.3. Comparison of our algorithm with a sequential approach

As it was discussed in Section 1.1, to our knowledge, none of the
previous studies in rural electrification and power engineering lit-
erature exactly matches with the objective of our paper. Complex-
ity of the existing models [12,13,17] limits their suitability for the
large data sets of demand points (up to 6500 households per site in
our case). However; we can still compare our results with a rela-
tively simpler sequential approach. In this approach, problem is di-
vided into three sub-problems: transformer location problem, MV
network design problem and LV network design problem. Then,
each sub-problem is solved sequentially.

In the sequential approach, a greedy approach proposed for set
covering problem6 by Chvatal [42] is implemented to solve trans-
former location problem. Chvatal proves that the cost returned by
the heuristic algorithm is at most H(d) times of the cost of an optimal
solution where HðdÞ ¼

Pd
i¼11=i and d is the size of the largest set

found by the algorithm. Once the locations of the transformer and
their service areas are known, the MV and LV networks are found
using MST and CMST algorithms, respectively. Then, total cost of
transformers and cost of networks are calculated.
6 Set covering problem aims to find the minimum number of sets subject to the
constraint that each demand point should be covered (served) by a facility within a
certain coverage criterion.



Fig. 11. Network sensitivity analysis: (a) The change in the number of transformers as the CT/CLV ratio increases. (b) The change in the number of transformers for different p
ratios as q ratio increases.

Fig. 12. Multivariate normally distributed random data and results: a–c and e–g, multivariate normally distributed 10 � 10 km2 sites with 1000 demand points. (d) The
behavior of algorithm as the standard deviation increases. (h) Average LV line per transformer declines as the average MV line and the number of transformer increases.

312 A.S. Kocaman et al. / Applied Energy 96 (2012) 302–315
Final number of transformers and total cost results for
both sequential approach and our algorithm are presented in
Table 3. It is shown that our algorithm tends to perform
better than the sequential approach in terms of the total cost
providing 4.5% improvement across all sites. We note that both
approaches discussed here are based on polynomial time algo-
rithms and provide reasonably good solutions to an NP-hard
problem.

5.4. Limitations of our algorithm and possible extensions

The model described in this paper intended for obtaining quick
estimates for the network structure and associated costs as a part
of feasibility analysis, rather than being used for detailed imple-
mentation. Below we list a set of simplifications that we adopted:

� Our present model does not take some concepts into consider-
ation such as power flow, power loss, voltage regulations, and
transformer sizes for simplicity purposes.
� We use constant cost parameters throughout the entire system

for transformers and wires. Thus, we limit our model to have
single type of transformer (25 kVA) and single LV and MV tech-
nology (three-phase).
� We assume that our demand points are distributed with the

similar loads and spatial characteristics and do not model bulk
MV and non-homogeneous loads.
� Upfront capital costs dominate the operations and maintenance

(O&M) costs and are treated as ‘‘overnight’’ costs (i.e. it is
assumed that the entire system investment is made at once).
� We do not include in our model network control devices such as
voltage regulators, and switches.

Our intent in this paper is to keep the model as simple as pos-
sible with the assumptions above while focusing on designing two-
level network such that the overall distribution system is opti-
mized in one framework as suggested by [43]. A multi-level net-
work design problem which includes multi-point network
configuration in one level has enough complexity; however our
model can still be extended to include some of the important con-
cepts mentioned above.

For example, based on the number of demand points served by
a transformer, transformer size can also be determined by the
model and different cost parameters can be used to calculate the
total transformer costs. For example, instead of using 25 kVA for
$5000 each, we can prefer assigning cheaper 16 kVA transformers
to the clusters which serve small number of points in sparse areas.
Thus, we could decrease the total cost and avoid underutilized
transformers.

Furthermore, it is also possible to put a capacity constraint (to
incorporate the power losses and voltage regulations) in MV net-
work even though this would make the problem even more com-
plicated. Using the source as root, we can use CMST algorithm to
design the MV level instead of using MST. For the LV level, Lmax

can be determined from the power loss and voltage drop con-
straints. Based on the number of transformers and the total length
of the network, number of network control devices can be esti-
mated and the cost of these devices can also be included in the
objective function (total cost) of the system.



Fig. 13. Uniformly distributed randomly generated data. Uniformly distributed randomly generated points on different sized areas.
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Another modification in the algorithm that could be done is that
instead of using, multi-point network configuration in the LV level,
star configuration can also be employed as it might be preferable
for some situations. In this case, at each step of the algorithm CMST
algorithm will be skipped and total cost of LV network will be
found after calculating the direct distance between transformers
and their associated demand points.

It is also possible to introduce time in our model with an
assumption on the lifetime of a grid. For depreciation purposes,
the lifetime of a grid is considered between 20 and 30 years but
in reality it is usually more with a proper maintenance [20]. It is
also acceptable to use a number between 1/8 and 1/30 of the cap-
ital cost for an estimate on the O&M costs in annual basis [20].
Thus, given annual costs and life time the grid, O&M costs can be
discounted to the present value and be included in our objective
function.
Fig. 14. Results for uniformly distributed random data. (a) Number of transformers out
different average nearest distances. (b) The number of demand points when the ratio bet
transformers versus average nearest distance for different values of Dmax constraint.
Furthermore, another potential application of our algorithm
would be in facility location problem where given a set of house-
hold locations, planners are interested in finding how many
schools or health facilities they need [44–48]. The unique situa-
tions of rural areas, in particular the sites in Sub-Saharan Africa
as explained in the introduction; prevent many of the existing
algorithms from being applicable as they usually require a set of
candidate facilities as an input and there is no way to refine the
candidate locations on the two dimensional coordinate system of
the ground in these sites. By removing the cost of the network from
the objective function, our algorithm can easily be modified for this
purpose. This will simplify our algorithm to an agglomerative clus-
tering algorithm that minimizes the total cost of opening facilities
subject to the Dmax constraint, which specifies the maximum dis-
tance between each household and the facilities (discussed in Sec-
tion 4.1 in detail).
putted by algorithm for the sites which have same number of demand points but
ween Dmax and average nearest distance is kept constant for each site. (c) Number of



Table 3
Comparison of our algorithm with a sequential approach.

Number of
demand
points

Number of transformers Total cost ($)

Our
algorithm

Sequential
approach

Our
algorithm

Sequential
approach

Difference (%)

Potou, SENEGAL 1797 71 70 2,433,520 2,534,654 �4.2
Mbola, TANZANIA 1175 90 96 3,032,250 3,180,655 �4.9
Tiby, MALI 2496 32 31 1,724,260 1,716,742 0.4
Ruhiira, UGANDA 6434 212 199 7,680,315 8,323,259 �8.4
Bonsaaso, GHANA 993 18 16 1,007,715 996,358 1.1
Ikaram, NIGERIA 1484 33 34 1,468,470 1,546,644 �5.3
Mayange, RWANDA 3909 114 107 4,148,520 4,327,479 �4.3
Pampaida, NIGERIA 1570 88 98 2,968,030 3,143,463 �5.9
Mwandama,

MALAWI
4230 152 154 5,335,235 5,832,993 �9.3
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6. Conclusions

A new heuristic algorithm for the design of two-level power dis-
tribution systems has been introduced. It has been presented that
the algorithm finds the number and locations of MV/LV transform-
ers without giving any candidate locations and finds a multi-point
low voltage network between demand points and transformers.
The algorithm is tested with the real household data digitized from
satellite imagery of Sub-Saharan African villages and results are
presented as an estimate for investment costs and financial
requirements to support electrification problems. The proposed
algorithm ignores transmission losses, load flow considerations
and local topography. Hence it should be viewed as a quick tool
which simplifies a complex problem and provides good starting
point for decision makers and practitioners. However; our algo-
rithm is flexible such that it can be simplified to other infrastruc-
ture problems (for example; facility location problem) or it can
be extended to include more distribution system components such
as transformer sizes.
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