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Wepropose a scalable computational framework to examine the effects of settlement patterns on the electrification
of an entire country. We first propose a data processing strategy to convert structure locations, identified from sat-
ellite imagery, to estimated household locations using census data. Then, we present a computational framework
that involves a two-level network design algorithm to find an abstract representation of the power distribution sys-
temat a national scale involving lowvoltage (LV)wires,mediumvoltage (MV)wires, and the transformers between
the two levels of the system. Given the system components, we introduce three metrics for per-household connec-
tivity requirements of LV andMVwires, and transformers to interpret our results at the administrative and the sub-
administrative unit levels. With our administrative level analysis provided for 9.2 million structures in Kenya, we
show that traditional rural/urban classification based on population densitymay not be enough and is often deceiv-
ing in estimating the cost of electrification and a new categorization based on our metrics provides more relevant
estimates on the total cost. Moreover, our metrics can help determine the least-cost electrification option (e.g.,
grid, mini-grid, or stand-alone systems) for expanding access in the sub-administrative unit level and create a plat-
form to perform sensitivity analysis based on different cost components. Our work demonstrates the potential for
improvements in universal electrification combining new and more detailed data sources with a scalable planning
framework andhelps governments achieve SustainableDevelopmentGoal 7 (SDG7)more quickly and at lower cost.

© 2020 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Introduction

Sustainable DevelopmentGoal 7 (SDG7)was adopted in 2015 by the
United Nations member states to provide access to “affordable, reliable,
sustainable, andmodern energy” to all by 2030 (UNDP, 2019). Although
there has been significant progress towards reaching SDG7 in recent
years, 840 million people still live without electricity as of 2019
(WorldBank, 2019). The lack of access to electricity in developing re-
gions necessitates rapid and informed decision making on electrifica-
tion options. Among the options available today, isolated or individual
customer-scale solar-battery systems, frequently referred to as solar
home systems (SHS), do not require any network at all. Networked op-
tions, such as a grid connection, rely on one or more large power plants
located at multiple points on a network, where transmission lines carry
the power over long distances (generally hundreds to thousands of kilo-
meters) on a high-voltage backbone. This backbone in turn feeds a
medium-voltage (MV) network, which distributes electricity directly
to large consumers and transformers. The transformers drop down the
voltage and allow a low-voltage (LV)wire to connect smaller customers
ed by Elsevier Inc. All rights reserved
in roughly a kilometer radius. The MV and LV network combined with
transformers is called the distribution system. In the context of invest-
ments for access to grid electricity, this system generally represents
the largest fraction of the total systemcost and therefore, understanding
the requirements of the distribution systems is quite important for
proper rural electrification planning.

Determining the best electrification option for a region is particularly
challenging especially when a mixture of solutions is possible. In fact,
Carvallo et al. show that in placeswith low electrification rates, hybrid so-
lutions that pair networked systems with standalone decentralized op-
tions typically offer an attractive approach to electrification (Carvallo,
Taneja, Callaway, & Kammen, 2019). To aid utilities in identifying electri-
fication options, a number of electrification planning tools that are capa-
ble of choosing between decentralized and networked options have
been developed (Ciller & Lumbreras, 2020). These tools apply least-cost
methods to determine the demand points, which may be better served
by grid extensions and those whom would gain more benefits from off-
grid systems. Depending on the techno-economic model used and the
availability of the data, granularity level of these tools varies. Literature
suggests that using all consumer locations for large-scale planning im-
poses strong computational constraints on many models. Thus, the stud-
ies aiming for large-scale electrification such as at the country level tend
.
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to make simplifications by grouping individual structures into villages or
large cells of 1 km (Ciller & Lumbreras, 2020).

When consumer points are aggregated over large areas for planning
purposes, it is not possible to understand the impact of the settlement
patterns on the components of the distribution systems and this may
lead to misleading results when determining the electrification option
at the local level. In order to address this problem, in this paper, we first
propose a data processing strategy for Kenya to convert structure loca-
tions, identified from satellite imagery, to estimated household locations
using census data. Then, we present a computational framework that in-
volves a two-level network design algorithm to find an abstract represen-
tation of the power distribution system involving low-voltage wires,
medium voltage wires, and the transformers between the two levels of
the system. Given the system components, we introduce three simple
metrics for per-household connectivity requirements of LV wire, MV
wire, and transformers to interpret our results at the administrative unit
level and the sub-administrative unit level. With our administrative
level analysis provided for 9.2 million structures in Kenya, we show that
traditional rural/urban classification based on population density is
often deceiving in estimating the cost of electrification and a new catego-
rization based on our metrics (combination of MV and LV wire require-
ments and the number of structures per transformer) provides more
relevant estimates on the total cost. Moreover, in the sub-administrative
analysis, our metrics can help determine the least-cost electrification op-
tion (e.g.,grid, mini-grid, or stand-alone systems) for expanding access
and create a platform to perform sensitivity analysis based on different
cost components. To the best of our knowledge, there is no focused
study that evaluates the value of different connectivitymetrics, highlight-
ing their roles and strengths in facilitating the electrificationplanningpro-
cess in a scalable manner. In addition, our work shows how these
connectivity metrics complement and clarify the composite cost metric,
which is usually the only metric reported in many planning studies.

This article adds to the existing knowledge in three ways. First, the
paper demonstrates a data processing strategy to estimate the residen-
tial connection locations at the country level. Second, the paper pro-
poses a framework for applying large-scale computationally-intensive
network optimizations onmillions of consumers. Third, the paper intro-
duces three complementary connectivity metrics for evaluating electri-
fication choices agnostic to the network planning approach. The
methodology that we put forward can assist the decision-making pro-
cess in electrification planning and serve as a decision support tool for
identifying suitable electrification options. While we present results
for Kenya, we believe that this tool can be applied to places with little
to no access to electricity. Meeting the targets set in SDG7 requires con-
sideration of multiple consumers across large landscapes with varying
settlement patterns; our paper outlines a feasible approach to perform
planning at scale to support electrification objectives.

The remainder of the paper is organized as follows: In the Related
work section, we present relevant contributions from literature, in A
data processing framework section, we discuss the data used for this
work and present amethod to estimate residential connection locations
from building structures identified by satellite images. In A
computational framework for distribution systems planning section,
we describe the two-level network optimization algorithm used in our
framework and our computational improvements. In An analysis on
the administrative boundary level and An analysis on the sub-
administrative boundary level sections, we show themetrics computed
using the two-level network algorithm and their applications at varying
resolutions. In the Sensitivity analysis section, we also show the sensi-
tivity of our metrics to cost. Finally in the Conclusion section, we pro-
pose feasible extensions to our work and conclude.

Related work

In a comprehensive review paper by Ciller and Lumbreras (2020),
planning tools used for rural electrification are classified into three
68
groups: pre-feasibility studies, intermediate analysis tools and detailed
generation and network design tools. Although not all efforts towards
rural electrification are presented or used as a software tool in the liter-
ature, we review the studies related to our work using the same
classification.

Pre-feasibility studies as in Debnath and Mourshed (2018),
Mahapatra and Dasappa (2012), Moner-Girona, Bódis, Huld, Kougias,
and Szabó (2016), and Zeyringer et al. (2015) estimate the least cost ap-
proach for different technology choices using simplifying assumptions,
allowing for a first pass at the planning problem. These studies do not
typically include network design and are likely to group consumers
into villages or cells (e.g., 1 km× 1 km). Grouping of consumers reduces
the computational granularity, and therefore, pre-feasibility studies
have lower model complexity, high computational speed, and are valu-
able for quickly evaluating technology choices over large-scale areas at
low resolution given varying generation options. Cost remains the key
reported metric of evaluation used with pre-feasibility methodologies.

The studies that are used for intermediate analysis have various
complexity levels depending on the network design and the technical
details considered. Similar to the pre-feasibility studies, the resolution
of the data used in the intermediate analysis studies is low. An interme-
diate planning approach presented in Parshall et al. (2009) proposes a
spatial costminimization electricity planningmodel for Kenya to decide
between grid-based electrification and off-grid solutions. The model
provides the basis for Network Planner (NP), an online decision-
support tool that has been developed to explore grid, mini-grid, and
off-grid options for rural communities (ModiLabs, 2019) and has been
used in national electrification studies of countries such as Senegal
(Sanoh & Parshall, 2012), Ghana (Kemausuor, Adkins, Adu-Poku,
Brew-Hammond, & Modi, 2014) and Nigeria (Akpan, 2015). Abdul-
Salam and Phimister (2016) propose an approach based on hierarchical
lexicographic programming that considers both cost efficiency and po-
litical economy to give large populations a priority for grid connectivity.
Bolukbasi andKocaman propose a prize collecting Steiner tree approach
to choose between grid and off-grid options and to determine the net-
work design for the grid-compatible nodes in a least cost manner
(Bolukbasi & Kocaman, 2018). Although these studies offer great value
by folding inmoremodeling complexity, they reduce the computational
difficulties by aggregating individual consumers and therefore neglect
the effect of settlement distribution. Similar to many electrification
planning models, intermediate studies report cost as the key metric of
evaluation.

In Ciller and Lumbreras (2020), Reference Electrification Model
(REM) (MIT, 2020) is described as the only planning tool that falls
under the detailed generation and network design class. REM aims to
design a power system configuration evaluating the demand profiles
for the individual customers. To overcome the computational burden
of a detailed plan using local level data, REM uses a sequential approach
to plan the sub-systems in a hierarchical manner. Although it provides a
very detailed network configuration, it is acknowledged in Ciller and
Lumbreras (2020) that, the network design approach used in REM is
not designed for rural electrification planning and may perform poorly
when designing small networks.

There are also some studies in the rural electrification literature that
use customer or household level data as in REM (MIT, 2020), however,
aim for obtaining quick estimates for the network structure and associ-
ated costs, rather than being used for detailed implementation. The
main objective of these studies is to show that rural settlement patterns
– especially in Sub-Saharan Africa – can be diverse and the effect of set-
tlement patterns on the electrification options might be overlooked in
the pre-feasibility and intermediate analysis studies due to the aggre-
gated data considered. Using several datasets of structure locations de-
veloped from satellite imagery, Zvoleff et al. propose ametric, called the
homogeneity index, that serves as a proxy for the degree of dispersion of
the structures. They provide solid evidence about the impact of geo-
graphic patterns on the cost of energy infrastructure. However, they
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assume that all identified structures within the images are households
and these households can be connected via single level LV network
(Zvoleff, Kocaman, Huh, & Modi, 2009). Kocaman, Huh, and Modi
(2012) use the same structure locations as Zvoleff et al. (2009) to pro-
pose a computationally-intensive two-level (MV and LV) network opti-
mization approach and evaluate the cost of grid extension for the
distribution systems in limited-size rural regions. Adkins et al. (2017)
use inter-community and inter-household distances as proxies to esti-
mate MV and LV wire lengths.

In this paper, we build upon the approach presented by Kocaman
et al. (2012) and present a computational framework to incorporate a
large number of connection points into electrification planning, thereby
improvingmodeling capacity at reasonable computational speed. In this
direction, our study is the first to propose a detailed data processing
strategy to estimate the residential connection locations from hand-
labelled structure points. Moreover, we propose a set of per-
household connectivity metrics - low-voltage wire, medium-voltage
wire and transformers - that can be used to rapidly evaluate electrifica-
tion choices agnostic to the network planning approach. We show how
network outputs from detailed models such as REM (MIT, 2020) can be
used to compute our metrics and how these metrics facilitate rapid
analyses of the electrification landscape within a country. We discuss
all our results for Kenya, forwhich, to the best of our knowledge, no sim-
ilar findings are available in the literature.

A data processing framework

In this section, we first discuss the source of our structure locations
data and propose a data processing framework to estimate the house-
hold locations.

Structure locations

Our study is principally built upon 11.9million human-labelled build-
ing structures in Kenya from satellite imagery data obtained in 2017. This
data was obtained from the Kenya National Electrification Plan - Struc-
tures Survey and includes latitude and longitude pairs for each identified
structurewithin the images. No additional information is provided on the
structure type or its pertaining attributes such as rooftop type and area.

Estimating household locations

It is quite common for rural households to own multiple structures
(shed or outhouse in addition to living quarters), while in more urban
locations, multiple households may dwell within the same structure
(KNBS, 2014). We propose a method to obtain an estimation of house-
holds from human-labelled satellite imagery data. Census data provides
the number of households at varying administrative levels. For the case
of Kenya, the census provides household counts of each ward. Wards in
Kenya (about 1400 in number) represent the smallest administrative
unit in Kenya. The household counts from census data, provide only ag-
gregates with no information on household locations. Because the
Kenyan census is decennial and there is readily available 2009 Kenya
census data, we apply a correction strategy to estimate household
counts in 2016. Facebook's 2016 High Resolution Settlement Layer
(HRSL), provides population data at a 30 m resolution (Facebook and
CIESIN-ColumbiaUniversity, 2016). Given the 2009 population data at
the ward level, and using HRSL population data, we estimate a popula-
tion growth factor k for eachward, which represents the growth award
has experienced between 2009 and 2016.We assumehousehold counts
scale linearly with population, thus we use a 1:1 relation between pop-
ulation growth and the growth in the number of households.1 Applying
this growth factor k to the 2009 ward-level household data, we can
1 From recently released 2019 Kenya census data, we observe roughly 10% difference
between population growth and the household count growth from 2009 to 2019.
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estimate the expected number of households in 2016 for each ward.
Upon obtaining the 2016 household estimates, a direct comparison
can be applied to the 11.9 million structures obtained from satellite
images.

Next, we compute a per-ward Structure To Household ratio (STH)
that is the ratio of 2017 identified structures to estimated households
(obtained from the census data adjusted to 2016). This ratio is fre-
quently greater than 1, as observed by Kenya 2014 DHS results (KNBS,
2014). In this paper, we assume every household in a ward to have
the same number of structures; we allow this ratio to vary from ward
toward.Where the STH ratios are higher than 2, we apply amerging al-
gorithm described below. We present our full data processing frame-
work, including estimating household locations and our merging
algorithm in Fig. 1.

A merging algorithm

A set-covering algorithm was applied at different radii and the
resulting structure counts were compared to each ward's household
count. The set-covering problem is an NP-complete problem and aims
to find the minimum number of sites and their corresponding location
to cover all demand nodes (Garey & Johnson, 1979). Here, we adopt a
well-known heuristic approach proposed by Chvatal (1979) to find
the reduced set of structures that cover all building structure locations
within a radius r of interest. Fig. 1 highlights the merging process
when STH are greater than 2. The steps of this approach are as follows:

1) Draw a circle around each building structure location with a specific
radius r.

2) Count the number of points in each circle.
3) Take the circlewith themaximumamount of points (Ties are broken

arbitrarily).
4) Eliminate the building structure points ‘covered’ with the circle in

Step 3.
5) Repeat 1–4 with the remaining points until each building structure

point is ‘covered’.
A merging radius of 20 m was found to be most suitable to match

household counts with the adjusted census data, a distance which re-
duces the 11.9 million human-labelled structures to a merged structure
count of approximately 9.2 million. The average STH ratio for all wards
is 1.3 with a maximum of 2.6. See the Merging approach section for a
more detailed discussion on merging radius. The merged structures
and their corresponding locations are subsequently used in the rest of
the paper. The paper treats each merged structure as requiring a sepa-
rate electric connection.

A computational framework for distribution systems planning

We propose a computational framework to estimate the i) per-
structure LV wire requirement; ii) per-structure MV wire requirement
needed for each structure to be connected to the network; iii) the num-
ber of structures per transformer, and; iv) a per-structure connection
cost. In this section, we detail how we compute these four metrics. Mo-
tivated by the need to evaluate cost estimates and additional metrics
which highlight spatial diversity, this paper adopts a two-level network
design (TLND) approach proposed by Kocaman et al. (2012) and pro-
poses a decomposition approach to obtain results over a large spatial
extent.

A two-level network design approach

The TLND combines the transformer location problem and the LV
andMV network design problems into a single optimization framework
by modeling a two-level radial power distribution system. The
two-level network connects demand points (in this case post-merged
structure locations) via intermediate transformers, which reside on a



Fig. 1. Data processing framework: 2016 population from the High Resolution Settlement Layer and 2009 population census are used to estimate a population growth factor (k), which is
used to estimate 2016 household counts. Wards with structure to household ratios > 2 are further processed, where structures are merged using a set-covering merging algorithm. The
two level network design is ran on resultant structures.
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primaryMV network. Themerged structure points are connected to the
transformers with a secondary multi-point LV network. As in Kocaman
et al. (2012), transformers are assumed to beuncapacitated, i.e. they can
handle unlimited demand. However, there is a limitation on the dis-
tance between a merged structure point and its serving transformer.
The TLNDdoes not consider the presence of the legacy grid, high voltage
(HV) network,2 load balancing requirements, or power flow.

Determining the layouts of both LV andMV networkswhile locating
distance-limited transformers that connect them in a continuous space
is an NP-hard problem, since the continuous space location-allocation
problem is NP-hard (Megiddo & Supowit, 1984). The algorithm pro-
posed by Kocaman et al. (2012) to solve this NP-hard problem leverages
an agglomerative hierarchical clustering approach. This bottom-up ap-
proach starts with locating a transformer on each demand point
(where each demand point represents a singleton cluster) and itera-
tively decreases the number of transformers as a pair of clusters is ag-
glomerated (merged) in a greedy manner based on a dissimilarity
measure. In this paper, the centroid method is used as the dissimilarity
measure: the closest pair of transformers which can be replaced by a
single transformer located at the centroid of the demand points without
violating the distance constraint is merged at each step. The minimum
spanning tree problem aims to find a tree (a network containing no cy-
cles) that spans all the points minimizing the total cost of the connec-
tion. At any iteration of the clustering algorithm, once the transformer
locations are updated, the MV network between them and the source
point is found using aminimum spanning tree algorithmwith the guar-
antee of an optimal solution (Prim, 1957). Once the clusters are formed
at each iteration of the agglomerative hierarchical clustering approach,
the multi-point LV network between the transformers and the demand
points is obtained by solving the capacitated minimum spanning tree
problem. This problem aims to find a spanning tree rooted at the trans-
former considering a distance or a number of nodes on each sub-tree
emanating from the root point. In the TLND, a distance limit is used on
the length of a sub-tree and the problem is solved using Essau and
Williams's heuristic approach (Esau & Williams, 1966). The maximum
2 High voltage transmission networks are strongly dependent upon the specific location
of central power generation systems.
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distance between demand points and the transformer is assumed to
be 500 m, which is a widely accepted limit for open-wire LV lines. For
each step of the agglomerative clustering, the algorithm calculates the
minimum spanning tree as the MV network and the capacitated mini-
mum spanning trees within each cluster as themulti-point LV network.
The overall cost is computed at each step and the least cost design is
outputted.

In order to run the TLND, we also assume that a transformer cost
USD 2000, a meter of MV wire cost USD 25, while a meter of LV wire
cost USD 10. While we use costs obtained from Kocaman et al. (2012),
our TLND can be runwith costs that are reflective of any region of inter-
est. Given the cost parameters and the constraints, the objective of the
algorithm is to find the number and locations of the transformers and
the least-cost layouts of MV and LV networks. In A decomposition
approach for large-scale planning section, we demonstrate how we in-
tegrate the TLND into the computational framework for estimating the
metrics at the country level.
A decomposition approach for large-scale planning

Planning at a national scale with individual structures result in mil-
lions of demand points: in the case of Kenya, 9.2millionmerged structure
locations need to be considered for planning. Even at the resolution of the
smallest Kenyan administrative unit, the median and maximum per-
ward merged structure count is 6872 and 32,321, respectively. In re-
sponse to the significant computational requirements of large-scale opti-
mizations, Navarro and Rudnick (2009) propose micro-optimizations for
small zones as an approach to applying network algorithms for large-
scale distribution planning. Inspired by this micro-optimization strategy,
we devise a framework to run the two level network design algorithm
on millions of demand points, without sacrificing spatial heterogeneity.

We develop our computational framework to minimize run-time
without sacrificing performance. Our approach considers the smallest
administrative unit as the entry point to apply the framework. For
Kenya we apply the framework in parallel on each ward. Given a
ward, the framework consists of three steps: 1) recursively decompose
the ward into cells, 2) parallelize the TLND for all cells, and 3) recon-
struct the ward. Fig. 2 shows our computational framework for a

Image of Fig. 1
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synthetic ward and its corresponding structures. In Fig. 2(a) we take a
ward as shown in i) and check the ward against three predefined pa-
rameters M, N and R. We compute the number of structures in a ward
(m) and compare it to a predefined threshold (M) which represents
the maximum number of structures that can be present. Next our ap-
proach computes the number of structures for the largest cluster in
that ward (n). Clustering is performed by the two level network design
algorithm to assign structures to a given transformer: by limiting the
maximum number of structures in a cluster to a predefined threshold
Nweare able to reduce the time it takes to design a lowvoltage network
for the structures in the cluster. Similarly, the ward radius (r) is com-
puted and compared to a predefined minimum radius R, which ensures
that the connecting radius of a utility is preserved and the number of
structures connected to a transformer is maximized. The radius param-
eter counterbalances the splitting and prevents the wards from being
excessively split. If r is less than R, the ward is accepted as a valid cell
for the network planning algorithm; if r is greater than R, then m and
n are compared toM and N, respectively.

Taking the example presented in Fig. 2(a)(i), in which the per-cell
maximum number of structures M is assumed to be 3, Fig. 2(a)(ii)
shows the results of the initial splitting. The split cell that does not
meet the constraints is further split until the constraints are met, as
shown in Fig. 2(a)(iii). Formally, our recursive split algorithm splits
the ward into cells Ci such that they obey the following constraints:
1) the number of merged structures in Cimust be less than a predefined
threshold M; 2) the number of structures for the largest cluster in Ci
must be less than a predefined threshold N; and 3) the radius of Ci
Fig. 2. Computational framework for planning using multiple demand points. (a) Splitting: A
continues until all three constraints are met (Number of structures in cell < M; Number of
planning algorithm is run in parallel on all valid cells to obtain transformer locations, the lo
locations from all cells in a ward are used to compute the medium voltage network for the wa
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must be greater than a predefined radius R in meters to allow any fur-
ther splitting. The predefined parameters of M, N, R, are all user-
defined parameters which can be determined a priori by running tests
on a small number of wards in order to understand the effect of number
of structures, settlement patterns and the search radius on the runtime
of the network planning algorithm.Wediscuss the effect of runtime and
our choice of parameters in the Sensitivity to scaling strategy section.

Fig. 3 presents pseudo-code for our splitting algorithm. Once valid
cells are obtained, the TLND is applied in parallel. Transformer loca-
tions, the low voltage network and a localized medium voltage net-
work are obtained for each Ci cell as shown in Fig. 2(b). The
localized medium voltage network does not consider transformers
in other cells belonging to the same ward; we address this in a final
step by putting cells back together and rerunning the medium volt-
age computation (minimum spanning tree algorithm) with trans-
former locations across all cells in the ward. We show in the
Sensitivity to scaling strategy section that splitting the ward does
not have adverse effects on the obtained results.

Detailed computing specifications are as follows: Running9.2mil-
lion structure locations was done on a computer cluster with two Intel
Xeon E5-2680 v4 processors with 14 cores each, 128GB RAM and 200
GB local SSD. 17,330 cells were generated for Kenya and the TLND was
ran on each cell. With the longest allowable runtime being 21 days,
this resulted in 98.8% of cells completing the TLND. Given our frame-
work, 90% of the cells ran in under 12 h with more than 50% of the
cells taking less than 1 h to run the TLND. 98% of the cells ran the
TLND in under 4 days.
recursive split is used to obtain valid cells for the network planning algorithm. Splitting
structures in largest cell cluster < N; cell radius > R) (b) Parallelization: The network

w voltage network and a local medium voltage network (c)Reconstruction: Transformer
rd.

Image of Fig. 2


Fig. 3. Recursive split algorithm.
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An analysis on the administrative boundary level

In this section, we first discuss the value of our proposed metrics to
measure the impact of spatial heterogeneity on the electrification cost
using the smallest administrative unit resolution (i.e. ward). Next, we
show the performance of our metrics compared to population density
at this resolution. Finally, we discuss the effect of real settlement pat-
terns on our computed metrics.
Fig. 4. Average ward connectivity
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Proposed metrics calculated for Kenya

Results for each ward are averages across all merged structures
within the ward. Here, we do not include the existing grid in Kenya
but rather focus on evaluating the impacts of networking given the
structures internal to theward. Fig. 4 shows the averageward levelmet-
rics by decile: per-structure low-voltage wire (meters), per-structure
medium voltage wire (meters), per-transformer number of structures,
metrics for Kenya by decile.

Image of &INS id=
Image of Fig. 4
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and per-structure cost (USD).3 Given a desired proximity of structures
to each other and to the transformer, our method allows for the quick
and easy identification of suitable wards for different types of electrifi-
cation. For example, an energy provider may be interested in determin-
ing which wards have an average distance between merged structures
of less than 30 m and correspondingly can be networked through LV
connections. As shown in Fig. 4(a), the 30 m threshold corresponds to
approximately 25% of the wards – primarily those in Eastern Kenya.
Similarly, an energy providermight be interested inwards where trans-
formers are in close proximity to eachother and consequently are suited
forMV networks. In Fig. 4(b) we show that almost 50% of wards require
less than 10 m of MV wire per structure. The ability to specify both LV
and MV requirements outside of costs allows planners to quantify the
effects of regional geography on network design.4 Fig. 4(c) shows the
average number of structures per transformer. Wards with the highest
number of structures per transformer are found in more urban regions
in Central Kenya. Generally, number of structures per transformer de-
creases in more rural regions even though there are a few otherwise
rural wards in Eastern Kenya with higher transformer capacity.

Fig. 4(d) shows the average ward per structure connection cost of
electricity access: this cost reflects the average combined wire and
transformer costs needed to connect a structure in the ward. The con-
nection cost metric shows which wards are suitable candidates for
networked grids and which wards are more suited for alternative elec-
trificationmodes likemini-grids or solar home systems (SHS). Differen-
tiating between wards suited for mini-grids versus those for SHS
requires leveraging the 3 other metrics in Fig. 4; the exact cost cutoffs
for each technology choice would depend on the price of these alterna-
tives and the utility's cost-sensitivity. The four metrics presented in Fig.
4 capture the complexities of geography-dependent network design,
the benefits of which are explored in the next section.
Why do we need new metrics?: a comparison with population density

Population density is ametric that is often used for estimating the lo-
cation and type (rural or urban) of demand centers. For energy access
problems, we observe that rural/urban classification based on popula-
tion density may not be enough and is often deceiving in estimating
the cost of electrification. A new categorization based on a combination
of MV and LV wire requirements and the number of structures per
transformer provides more relevant metrics to anticipate the total cost
and create a platform to perform sensitivity analysis based on different
cost components. For this purpose, we compare our metrics against
population density to quantify the additional gains which our metrics
may offer.

Fig. 5 shows a scatter plot of the per-structure MV requirement as a
function of LV requirement. In this figure, each bubble represents a
ward, and the bubble sizes show average number of structures per
transformer of the ward. The average number of structures per trans-
former are grouped by quartiles and the quartile ranges are shown in
the figure. The coloring in Fig. 5 shows the people per square kilometer
(sqkm). As expected,wardswith higher population density (i.e. those in
blue), tend to be grouped at the lower left hand corner of the figure,
with low MV and low LV wire requirements and with higher number
of structures per transformer. Thesewards tend to bemore urban, likely
with established grids. The upper right hand corner of Fig. 5 contains
sparse rural wards with high LV and high MV requirements and low
number of structures per transformer. However, it is important to
note that not all wards that can be considered rural (based on
3 It is important to note that the two-level network design enforces a limitation of 500
m for connecting structures on the same LV wire (due to voltage drop considerations).

4 It is important to note that computed wiring requirements are distances as a crow
flies, and practical routing considerations might lead to distances which are larger than
those presented here. This concern could be addressed by incorporating topology into
the methodology.
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population density) reside in this quadrant. Given our proposedmetrics,
these rural wards should be further categorized as nucleated and non-
nucleated (or dispersed) rural settlements, given their LV andMV com-
bination. The details of this classification are summarized in Table 1.

A strong observation from Fig. 5 is that there are a number of wards
with varying connectivitymetrics at similar population densities. To ex-
plore this observation, we analyzed two such wards with similar popu-
lation densities of 120 people per sqkm. Fig. 6 shows bothwards in a 30
km2 box for scale but does not show the administrative boundary of the
ward. The figure also shows theward labels and their county name. The
figure shows the per-structure LV length, per-structure MV length and
the number of structures in brackets, respectively. Upon comparing
both wards, we see that ward E in Siaya has very different LV and MV
requirements toward F inMakueni, although they have similar popula-
tion densities and a similar number ofmerged structures. LV andMV re-
quirements in ward E are significantly lower because of high structure
nucleation, while the LV and MV requirements in ward F are much
higher because structures are further away from each other on average.
The varied infrastructure requirements of bothwards results in an aver-
age difference in connection cost of $1341. By using our proposed met-
rics, we capturemore insights on the diversity ofwire requirements and
by consequence connection costs needed to provide electricity access.
We further quantify the dissimilarity in wire requirements for wards
with similar population densities in Kenya. For every ward, we identify
wards of similar population density (within 10%). We compute the av-
erage LV and MV difference between wards with similar population
density and theward of interest. On average, 47% of thewardswith sim-
ilar population density have LV orMV differences greater than 20%. This
indicates that using population density as a metric for connectivity
would be misleading approximately half of the time. This distribution
of system requirements is lost when population or structure density
alone is used as the metric of evaluation, or when residential consump-
tion nodes are aggregated to form population centers.

Effect of settlement patterns

Zvoleff et al. (2009) show that geography and by consequence set-
tlement behavior affect network lengths. Similarly, Kocaman et al.
(2012) discuss that settlement patterns play a role in the results ob-
tained from the two-level network design. In this section, we aim to un-
derstand the effect of real settlement patterns on our computedmetrics.

Fig. 7 shows four wards with varying settlement patterns, where
each point represents a merged structure (points in close proximity
might appear as a single point in the figure). The grey dashed boxes sur-
rounding the structures represent a 25 km2 box. In brackets we report
the per-structure LV requirement (m), the per-structure MV require-
ment (m), and the structure count, respectively for the ward. Fig. 7
(a) and (b) show wards with similar per-structure LV requirements
and varying per-structure MV requirements, while Fig. 7(c) and
(d) show wards with similar per-structure MV requirements and vary-
ing per-structure LV requirements. At similar per-structure LV require-
ments as seen in Fig. 7(a) and (b), the per-structure MV needed in
ward A is 70 times lower than that needed inward B due to the proxim-
ity of clusters. In Fig. 7(b), significantMV is required to connect clusters
of structures. These clusters may be villages or communities. However
in Fig. 7(a), all structures and their clusters are in tight proximity. The
per-structure MV requirement in Fig. 7(b) is even higher due to the
smaller number of structures present in ward B when compared to
ward A. At similar MV, Fig. 7(c) has one-third the LV requirement of
Fig. 7(d). There is an even spread of structures throughout the 25 km2

grid in Fig. 7(d), which influences the per-structure LV requirement.
With a higher structure count in Fig. 7(d), it is expected that the per-
structure LV requirement would be low as the total LV wire length
and cost is spread out among a higher number of structures, however
this is not the case. Because structures are more evenly spread out in
ward D, the LV wire requirement is high. We observe that nucleation



Fig. 5. A scatter-plot showing per structure LV wire requirement against per structure MV wire requirements. Each bubble in the figure represents a ward in Kenya and the bubble size
indicates the average number of structures per transformer by quartiles. People per sqkm are captured by the coloring of the bubbles. There are multiple wards with similar population
densities that have varying MV and LV requirements. Thus our connectivity metrics capture more spatial diversity than population density alone.
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of structures drops the per-structure LV requirement while nucleation
of clusters (villages, communities) reduces the per-structure MV re-
quirement. We are able to show that our proposed connectivity metrics
capture the effects of settlement patterns.

An analysis on the sub-administrative boundary level

We recognize that decision making about electrification technolo-
gies occurs at a granular level and that a single technology choice cannot
be assigned to an administrative unit. As a result, we leverage the data
and methodology for analysis at sub-administrative boundaries. To ex-
plore this in depth, we present the complete network for a sample
ward of 7047 structures. Fig. 8(a) shows transformer locations and the
MV network for all the structures within the ward. The blue pentagons
represent transformer locations, red solid line shows the MV network,
and the grey points represent the structures. In Fig. 8(b), we include
the LV network (as green dashed lines) for a subset of the ward, show-
ing connections between individual structures and transformers. Given
our proposed methodology, the MV and LV network with individual
connections can be visualized as demonstrated by the figure. Energy
planners can inspect connections across transformers and structures
Table 1
A new categorization based on a combination of our metrics to anticipate the cost of electrifica

Category Proposed

MV/structure LV/structure

Urban & suburban Low Low
Nucleated rural High Low
Non-nucleated rural Low High
Extreme sparse rural High High
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and subsequently aggregate the metrics to a level that is most useful
to support their decision making.

With our methodology we can identify which transformer loca-
tions and connecting structures can be networked with minimal LV
wire. For the same ward, Fig. 10(a) shows the number of structures
per transformer at each transformer by quintile. Blue transformers
are connected to many structures while red transformers are con-
nected to few structures. In the figure, we observe that transformers
with few surrounding grey dots have a lower number of connecting
structures, while transformers with many surrounding grey dots
have a higher number of connected structures. Fig. 10(b) shows the
distribution of structures per transformer for all transformers in
the ward. With a ward average of 77.5 structures per transformer,
10% of wards have more than 160 structures per transformer
(twice the ward average). The distribution within the ward can be
missed when only considering averages of our metrics along admin-
istrative boundaries or at lower resolutions. The flexibility to evalu-
ate the proposed metrics at multiple scales allows for deeper
evaluation of varying electricity technologies.

Using the sameward, we show that our methodology andmetrics
can be used to identify opportunities for varying electrification
tion.

metrics Population density

Structures/transformer

High High
High Low
Low Low
Low Low

Image of Fig. 5


Fig. 6. Two wards with around 120 people per sqkm are shown. The per-structure LV requirement, per-structure MV requirement, and the structure count of the ward are shown
respectively in brackets. The grey boxes surrounding each ward represent 30 km2 area for scale and do no show the administrative boundaries. Figure (a) and (b) show that wards can
have similar population densities but varying settlement patterns which can influence the computed metrics.
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technologies. Table 2 presents four scenarios that align with the
numbers presented in Figs. 9(a) and 10(a). Each scenario shows
the combination of two of our metrics which may lead to a different
electrification strategy. We refer the reader to both Figs. 9(a) and 10
(a) for spatial visualization. In Table 2, the transformer colors are
Fig. 7. Four wards with varying settlement patterns are shown. In brackets are the per-struct
respectively. The grey boxes surrounding each ward represent a 25 km2 area. Figure (a)
Figure (c) and (d) show varying LV requirements at similar MV requirements.
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given in brackets for each scenario. Scenario 1 occurs when there
are many structures connected to a given transformer and there is
a small LV wire requirement for structures connected to the trans-
former. With a large number of structures connected to the trans-
former, the cost of the transformer is spread across multiple
ure LV requirement, per-structure MV requirement and the structure count of the ward,
and (b) show similar LV requirements with significantly different MV requirements.

Image of &INS id=
Image of Fig. 7


Fig. 8. Complete network for a sample ward with 7047 structures. Figure (a) shows transformer placement and the MV network connecting the transformers. Figure (b) includes the LV
network for a small section of the ward, showing connections between structures and transformers.

Table 2
Scenarios highlighting different electrification strategies which can be identified with our method.

Scenario Structures/transformer LV/structure (m) Possible system(s)

1(Purple) High (blue) Low (blue) Grid Extension or Minigrid
2(Black) High (blue) High (red) Solar Home System (SHS)
3(Orange) Low (red) High (red) Solar Home System (SHS)
4(Dark Red) Low (red) Low (blue) Local Generation or Minigrid
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structures, thereby reducing the cost to any individual structure.
Coupled with a low LVwire requirement, the choice of electrification
is heavily dependent on the per-structure MV wire requirement. A
lowMV wire requirement suggests a centralized system like grid ex-
tension is a viable option for structures connected to these trans-
formers. Scenario 2 shows there are many structures connected to
a transformer but the structures are not clustered around the
transformer.5 Although the per-structure transformer cost is low
due to high number of connecting structures, the high LV wire re-
quirement becomes a major bottleneck to networking this trans-
former and the structures associated to it. Solar home systems
might prove to be suitable alternatives in this scenario. Scenario 3
presents a worst case scenario from a networking standpoint. Here
there are few structures connected to the transformer and the struc-
tures are not in close proximity to each other. Similar to scenario 2,
solar home systems might be worth considering as the cost to con-
nect structures is high. Scenario 4 represents a case where there
are few structures connected to the transformer, but the structures
are in close proximity to each other and the associated transformer.
In this scenario local generation and distribution through the low
cost LV network would seem the most suitable approach. Because
our approach uses individual structures, energy providers can ex-
plore the implications of networking at multiple resolutions, right
down to the individual transformers. We do not show the MV wire
5 Note that we show 7047 structures which may appear as though they are in close
proximity but represent multiple kilometers of coverage.
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metric at sub-administrative boundaries, as the existing grid net-
work is needed in order to assign an MV wire requirement to a
given transformer.
Sensitivity analysis

Weevaluate the robustness of our proposedmetrics by performing a
cost sensitivity analysis. Table 3 presents our proposed metrics under 3
cost scenarios: i) baseline cost previously discussed, ii) double MV and
LV wire cost iii) double transformer cost. The sensitivity analysis is per-
formed on four previously presented wards A through D, first intro-
duced in the Effect of settlement patterns section. From this sensitivity
analysis we show that our proposed per structure MV, LV and trans-
former metrics are stable (less than 3% change) under the three cost
scenarios. We also observe that the wire cost is the primary driver of
cost. This observation is apparent when doubling transformer cost re-
sults in less than 6.5% change in the cost per structure across all four
wards, while doubling wire costs, doubles the cost per structure across
all wards.

Through this cost sensitivity analysis, we show that our pro-
posed metrics can support infrastructure planning, where the ac-
tual unit wire and transformer installation costs (best known by
the planner) can be directly multiplied by our metrics to obtain re-
alistic cost estimates to support electricity infrastructure decision
making.

Image of Fig. 8


Fig. 9. Low Voltage (LV) per structure, for each transformer in sample ward. a) Spatial distribution of LV per structure, binning transformers by quintile. b) CDF of LV per structure for all
transformers in ward. The ward average is 32.5 m. Four scenarios are presented, each with different implications for networking. See Table 2 for details.
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Conclusion

In this paper we assess the effects of regional geography and settle-
ments patterns on electrification strategies. By estimating the locations
of residential structures through our proposed merging process, we are
able to capture settlement behaviors of structures over a whole country.
Through our novel computational framework that involves a network
Fig. 10. Number of structures per transformer, for each transformer in the sample ward. a) Spa
structures per transformer for all transformers inward. Theward average is 77.5 structures per
See Table 2 for details.
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design algorithm,we develop a two-level distribution network between
the structures. We present a set of connectivity metrics on the wire re-
quirements, number of structures on a transformer, and connection cost
on a country level without sacrificing spatial resolution. We show that
easily accessiblemetrics such as population density ignore the interplay
between structure locations, and accordingly the true connection cost of
a structure.
tial distribution of structures per transformer, binning transformers by quintile. b) CDF of
transformer. Four scenarios are presented, eachwith different implications for networking.

Image of &INS id=
Image of Fig. 10


Table 3
Cost sensitivity analysis under three scenarios i) baseline cost (MV= $25/m, LV= $10/m, Transformer= $2000) ii) 2×MV and 2× LVwire cost, iii) 2× transformer cost. Sensitivity anal-
ysis is presented for 4 wards (A,B,C,D) previously in Effect of settlement patterns section

Baseline cost 2× wire cost 2× transformer cost

LV per structure

Ward A 25 25 25
Ward B 27.4 27.4 27.4
Ward C 31.1 31.1 31.1
Ward D 96.5 96.3 96.5

MV per structure

Ward A 2.87 2.89 2.89
Ward B 194.2 194.2 194.2
Ward C 38.99 38.99 38.99
Ward D 40.85 40.92 40.85

Structures per transformer

Ward A 137.12 137.13 137.13
Ward B 29 29 29
Ward C 32.1 32.1 32.1
Ward D 14.7 14.6 14.7

Cost per structure

Ward A 336 660 352
Ward B 5198 10,326 5266
Ward C 1348 2634 1411
Ward D 2123 4109 2259
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Wedemonstrate thatmetricswhich capture settlement behavior are
crucial when planning efficient electrification on a large scale. Meeting
the targets set in SDG7 requires considerations of multiple consumers
across large landscapes with varying settlement patterns and our pro-
posed metrics can easily be folded into existing planning approaches
to support these objectives. In addition, thanks to its scalability, our
framework can support decision making at a granular level by
recommending electrification strategies such as solar home systems,
mini-grids and grid.

Our future efforts will involve relaxing some of the assumptions
made in this work. Relaxing the assumption on uniform consump-
tion would potentially lead to different network outcomes and
would allow for variable transformer sizing. We also intend to cap-
ture existing grid infrastructures in our planning approach, for all
settings have some initial network backbone that influences optimal
electrification strategies. Finally, in our current implementation, the
two-level network does not account for environmental and topolog-
ical constraints such as protected areas, rights-of-ways, and
Fig. 11. CDF of STH ratios for all wards in
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elevation. As we believe these constraints would influence the me-
dium voltage computation, we aim to incorporate them in
future work.
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Appendix A

Merging approach

We considered variousmerging radii tomerge the 11.9million iden-
tified building structures.
Kenya under varying merging radii.
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Fig. 11 shows the effect of merging on STH ratio under varying
merging radii. We see that the maximum STH ratio is 6.5 for
unmerged structures, with multiple wards well above 2 structures
per household. This implies that at the worst case, for a specific
ward, every household has about 6 structures. We believe this es-
timate to be wrong as it does not account for other building types
(commercial, industrial, etc). For merging radii from 5 to 30 m,
we observe a drop in the STH ratio, where at 20 m and 30 m, the
maximum STH ratios are 2.6 and 2.1 respectively. We decided on
the 20 m merging radius because it reduced the STH ratio for
wards with exceedingly high STH ratios, without compromising
those wards with STH less than 1. In the case of a merging radius
of 30 m (as seen by the purple line), the STH ratios of less than 1
were further depressed.
Fig. 12. Completion time of the TLND in hours for the cell that took the longest time. Four out of five times, splitting a ward into 4 dropped the completion time by half.

Fig. 13.Number of structures for the cellwill the longest run time. Splittingdecreased thenumber of structures. However, number of structures is not the only driver of completion time. As
in the case of Kendu Bay, spatial layout of structures also influences the computational time.
Sensitivity to scaling strategy

We evaluated our framework by looking at some wards under
varying split configurations. The selected wards were split into 4, 9,
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16 and 25 cells and the TLND was applied to each cell. The runtime,
per-structure low voltage wire requirement, per-structure medium
voltage wire requirement and transformer capacity for the split con-
figurations were evaluated against the unsplit ward. In this experi-
ment, we only control the number of cells generated and do not
apply limits on the number of structures in the cell or the cell radius.
Fig. 12 shows the worst case completion time in hours for five wards
split into the aforementioned number of cells. The worse case com-
pletion time represents the completion time for the cell that took
the longest to run. The computational time is cut by more than half
for 4 of the 5 wards when the ward is split into 4 cells. Subsequent
splitting further improves the completion time for the 4 wards.

The computational time for Kendu Bay in Fig. 12 oscillates as the
number of cells increases, although the worst case always takes less
time when the ward is split than when it is left unsplit. To better un-
derstand this oscillation, we looked at the number of structures for
the cell with the longest runtime in each of the wards. Fig. 13
shows the number of structures under varying splits for the cell
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with the longest completion time. Capping the number of structures
in a cell (M) at 3000 structures, significantly decreases the comple-
tion time. In our computational framework our choice for the
hyper-parameter M was 3000 and thus ensured that large wards
were split to cells with manageable number of structures. Revisiting
Kendu Bay ward, where completion time oscillated, we observed
from Fig. 11 that dropping the number of structures in the cell is
not the only contributing factor to completion time. Fig. 13 suggests
that the settlement pattern or spatial layout of structures within the
cell influences the completion time. It also suggests that without
enforcing minimum limits on the cell radius R, over-splitting a
ward can have negative effects thereby increasing the computational
time. Thus we used a minimum cell radius of 500 m to stop over-
splitting and capped the maximum number of structures in the
Fig. 14. Effect of splitting and MV reconstruction on our proposed connectivity metrics.
The two-level network design is applied to each cell. Averages for the ward are reported
here.
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largest cluster (N) at 300. This ensured computational gains while
minimizing degradation in performance of our metrics.

Fig. 14 shows our average connectivity metrics for 5 wards under
varying split approaches. The figure also shows the results when the al-
gorithm is run on thewholeward using theUnsplit label. These average
connectivity metrics are obtained by first summing the metrics across
all cells in a ward, then normalizing the sums by the number of struc-
tures in the wards. Fig. 14(a) and (b) show that our LV andMV connec-
tivity metrics are not heavily influenced by splitting the ward into cells
and applying our reconstruction strategy. However, we notice that the
number of structures per transformer varies under different split strat-
egies and tends to drop as we increase the number of cells a ward is
split into. From these wards, we observe that transformers tend to be
more under-loaded as the number of cells increase. We apply a mini-
mum radius R in our splitting algorithm to prevent excessive splitting,
thereby ensuring that the number of structures per transformer is
maximized.
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