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a b s t r a c t

Pumping of water for agriculture can be a flexible component of electric demand. In this study, a
framework that involves scenario based stochastic programming models is developed to examine the
effect of load shifting on the renewable energy system sizing for agricultural load. With the help of this
framework, alternative load shifting policies are evaluated to observe how the intrinsic flexibility of
agricultural load reduces the amount of investments while designing a renewable system. Using real data
from India’s Gujarat region, solar and wind cases are evaluated separately to understand the coherency
between these sources and the agricultural demand. The value of using a dispatchable source to help
with the intermittency of the renewable sources in the systems is discussed. It is also shown that energy
storage can be a convenient control mechanism for the integration of renewables; however, is an
expensive substitute for demand response programs for agricultural load. Benchmarks for the incentive
amounts that can be provided for alternative load shifting policies are presented.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing the penetration of renewable energy sources is a
promising option for reducing carbon emissions and dependence
on fossil fuels. However, the intermittent generation of these
sources reduces the system reliability and limits their penetration
levels in the absence of any integration measures. Several methods
are proposed in the literature to improve the reliability of systems
with large amount of renewable energy generation including grid
interconnection [1], storage [2], forecasting [3] and demand
response [4]. Unlike themethods that aim to smooth out the supply
curve, demand response activities encourage energy aware con-
sumption patterns to align demand with variable supply through
incentives provided to end use customers [5]. Although there are
challenges to demand response deployment [6], the topic has
drawn significant attention in the literature due to its acknowl-
edged benefits and future opportunities [7].

Previous work on demand response programs for renewable
energy systems has largely focused on the operational effects of
such programs mostly for microgrids [8,9]. Stadler et al. [10] review
. Kocaman).
the effect of demand response on microgrid operations. In another
review paper,Wang et al. [11] discuss the value of demand response
on multi-energy systems. The number of studies considering de-
mand response in the infrastructure sizing and planning phase, on
the other hand, is limited. Among these studies, Erdinc et al. [12]
present sizing decisions for a photovoltaic and energy storage
system for a smart household with seasonal, week-day, and
weekend load variability. Wang et al. [13] simulate a hybrid
renewable energy system consisting of solar, wind, and diesel
generation and battery storage that must meet residential demand
in the Sacramento Valley of California. Viana et al. [14] consider
demand response and photovoltaic distributed generation to meet
the demand of responsive residential consumers and evaluate the
substation peak demand and energy consumption. Nyholm et al.
[15] examine the impact of electricity pricing schemes on house-
hold solar panel size. Moving beyond residential loads, other pa-
pers have examined the effects of demand response programs on
systems with aggregated demand. Bitaraf and Rahman [16] use
different demand response and energy storage scenarios to reduce
curtailment for fixed wind capacities. Behboodi et al. [17] optimize
resource portfolio with five components of base, intermediate,
peak, intermittent, and reserve generation to meet shifted demand.
Pedro and Almeida [18] use hydro, wind and solar energy to
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Nomenclature

Indices and Sets
t;k Indices for time stages
u Index for scenarios
T Set of time stages
U Set of scenarios

Parameters
cI Annualized investment cost of renewable sources
cD Diesel cost
cs Storage cost
gtu Normalized generation amount of 1 MWp solar or

wind system at time t, in scenario u
dtu Demand at time t, in scenario u
aunmet Maximum percentage of unmet demand
pu Probability of scenario u
ts Maximum allowed time for demand shift
LTg Lifetime of wind turbines or solar panels

i Interest rate
g Storage efficiency
Ldiesel Diesel limit in the system

Variables
Cap Installed MWp capacity of solar or wind
Dshift
tku Amount of demand shifted from time t to time k, in

scenario u
Dnet
tu Net demand shift at time t, in scenario u

Dunmet
tu Unmet demand at time t, in scenario u

Pdieseltu Diesel generation at time t, in scenario u
Pspilltu Renewable energy spilled at time t, in scenario u
Pstrtu Renewable energy sent to storage at time t, in

scenario u
Prlstu Renewable energy released from storage at time t, in

scenario u
Pstu Renewable energy stored at time t, in scenario u
Pusedtu Renewable energy directly used at time t, in scenario

u
S Storage capacity
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optimize renewable energy mix in Portuguese. Konstantelos et al.
[19] and Chen et al. [20] consider the demand response for the
investment planning in the distribution system level. Furthermore
[21,22], explore the benefits of demand response to distribution
networks planning.

While existing research has primarily explored the effects of
demand response programs on infrastructure sizing problems for
residential and industrial load types, there are other types of de-
mand, which could provide system benefits when paired with load
shifting capabilities. Agricultural loads, themain focus in this paper,
are promising alternatives because of the inherent flexible nature
of the demand [23]. Despite such loads having some degree of
inflexibility (there are certain intervals in which energy is needed
to protect crop health and yields [24]), most of the time, farmers
can tolerate shifting their productive electricity loads in case of
limited resources [25,26]. Compared to other demand response
programs that are designed to control, for example, air conditioning
demand of residential consumers for a minute or even less amount
of time, the farmers’ flexibility in the daily levels can provide a huge
benefit to the power systems. Several agricultural demand
response programs in California have already shown the benefits of
such flexibility to utilities [27,28]. Even so, the potential benefits of
pairing demand response with agricultural demand have yet to be
analyzed with a detailed mathematical modelling.

Motivated by the recent efforts on renewable investments for
agricultural feeders [29], in this study, we propose mathematical
models to examine the effect of demand response on the renewable
energy system sizing for agricultural load. In this problem, the
amount of energy used for irrigation as well as the renewable
sources can be uncertain. Stochastic optimization models that take
this uncertainty into the account in the planning phase of the
systems can lead significant investment savings. Previous work that
utilizes stochastic optimization techniques on demand response
programs for renewable energy systems has largely focused on the
operational effects of such programs. Wang et al. [30] and Zhao
et al. [31] consider stochastic unit commitment problems with
uncertain demand response. Hu et al. [32] analyze the effect of
demand response in an energy market with demand uncertainty
using a multi-stage stochastic optimization model with multiple
objectives. Falsafi et al. [33]. present a stochastic programming
model for wind-thermal generation scheduling. Chen et al. [34]
focus on the real-time and price-based demand response man-
agement for residential appliances using stochastic and robust
optimization frameworks. Jiang et al. [35] study a stochastic day-
ahead economic dispatch model considering demand response
and wind power. The literature on the optimal sizing of renewable
energy systems in general is very rich; however, most of the studies
approach the problem in a deterministic way [2]. There is only a
limited number of studies that takes the uncertainty into account
[2,36,37]; however, these studies neither consider demand
response programs nor focus on the agricultural demand.

This paper fills the gap in existing research by providing the
following contributions: i) A two-stage stochastic programming
framework to evaluate the impact of load shifting as a demand
response program on the optimal sizing of renewable energy sys-
tems for agricultural load is developed, ii) This framework is then
applied using real solar and wind generation and demand data
from the Gujarat region in India, iii) Additional models are devel-
oped to discuss the value of using a dispatchable source in the
system and using energy storage as a substitute for demand
response, iv) Benchmarks for the incentive amounts that can be
provided for alternative load shifting policies are presented. v) It is
shown that the effect of the load shifting programs on the renew-
able investments is not intuitive and requires a stochastic optimi-
zation process.

The sections of this paper are presented as follows: Section 2
provides the problem definition and formulation. Section 3 pre-
sents the computational analysis. A discussion on alternative sys-
tems andmodels is given in Section 4. Section 5 restates the paper’s
most salient conclusions.

2. Problem definition and formulation

Pumping of water for irrigation can be a very flexible component
of electric demand. In this problem, we develop a conceptual
framework that can help us examine the effect of load shifting on
the renewable energy system sizing for agricultural load. We focus
on an agricultural area where all consumers use electricity for
irrigation. Our problem is to design an island type renewable en-
ergy system for this group of consumers. We acknowledge that the
farmers may have different flexibility limits in terms of irrigation
times depending on the crop types. In optimization framework, we
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have a parameter that represents the maximum allowed time for
demand shift. We evaluate alternative load shifting policies
experimenting with this parameter to see how the farmers’ flexi-
bility reduces the amount of investments while designing a
renewable system. We perform these experiments for solar and
wind separately to observe which renewable source is more
coherent with the agricultural load and examine the renewable
energy curtailment or spillage amounts. As in [38] and [37], in this
paper, we refer to energy curtailment or spillage in a period as the
use of less wind or solar energy than is potentially available at that
time. To help with the intermittency of the renewable sources, we
assume that an expensive dispatchable source such as diesel also
exists in the system as a back up alternative. In Section 4.1, we also
discuss the cases where we remove the dispatchable source from
the system and meet the demand partially with different amounts.

We propose a two-stage stochastic programming with recourse
model to minimize the investment cost of solar or wind energy
sources while penalizing the expected diesel usage. In two-stage
stochastic programs, we have a set of decisions to be taken before
some random events are realized. These decisions are called first-
stage decisions and are usually represented by x. After the reali-
zation of event u, second stage actions yu are taken. Therefore, the
first-stage decisions x are made before the realization of the
random data and hence should be independent of the random data,
whereas the second-stage decisions yu are functions of the data. A
general representation of a two-stage stochastic programmingwith
recourse is provided in (1). We refer the readers to Ref. [39] for
more details.

min cTxþ E½Qðx; xÞ�
s:t: Ax ¼ b x � 0

(1)

where Qðx; xÞ is the optimal solution of the second stage problem:

min qTy
s:t: TxþWy ¼ h y � 0

(2)

x :¼ ðq;h; T ;WÞ is the data related to the second stage problem (2)
and the expectation operator in problem (1) is takenwith respect to
the probability distribution of x. When x has a finite number of
realizations (or scenarios) xu ¼ ðqu;hu; Tu;WuÞ with respective
probabilities pu, then for a given x, the expectation E½Qðx; xÞ� is
equal to the optimal value of the following linear programming
problem (3):

min
X

u

puqTuyu

s:t: TuxþWuyu ¼ hu cu

yu � 0 cu

(3)

Then, it is possible to write the two-stage stochastic program-
ming with recourse model as in the following extensive form (4):

min cTxþ
X

u

puqTuyu

s:t: Ax ¼ b

TuxþWuyu ¼ hu cu

x � 0

yu � 0 cu

(4)

In our formulation, the first stage decision variables represent
the size of the energy systems. The second stage decision variables
are the amount of diesel used, the amount of renewable generation
used or spilled and the amount of demand shifted at each time
period for each scenario. We provide the extensive form of our two-
stage stochastic programming model below:

min cICapþ cD
X

t2T

X

u2U

puPdieseltu

s:t:
(5)

Xminð365;tþtsÞ

k¼t

Dshift
tku �

X

k¼maxð1;t�tsÞ

t

Dshift
ktu ¼Dnet

tu ct;u (6)

X

t2T

Dnet
tu ¼0 cu (7)

X

k2T :k> t

Dshift
tku � dtu ct;u (8)

gtuCapþ Pdieseltu ¼ dtu � Dnet
tu þ Pspilltu ct;u (9)

Pdieseltu ; Pspilltu ;Dshift
tku ;Cap � 0; Dnet

tu free ct; k;u (10)

The objective function (5) minimizes the annualized investment
cost and expected diesel cost throughout the planning horizon.
Constraint (6) is used to define the net demand shift for each time
period and scenario. Constraint (7) states that net change in total
demand should be zero in each scenario so that total demand
amount before and after the adjustments would be the same.
Constraint (8) states that total demand shifted from a time period
to the future periods cannot exceed the demand in that time period.
Constraint (9) is a balance equation that makes sure that the de-
mand is met and excess supply is curtailed. Constraint (10) is the
domain constraint.

3. Computational analysis

In this section, we first present our data and perform a pre-
liminary analysis to understand the dynamics of the data sets. We
examine the required systems size and energy curtailment
amounts if there is no demand response applied and no dispathable
source used when a predetermined percentage rate of the demand
is met. Then, we present and discuss the result of our model and
present a sensitivity analysis on the cost parameters of the system.

3.1. Data and preliminary analysis

Agriculture is an important economic activity in Gujarat and
electricity supply for this sector accounts for about 27% of the total
electricity supplied [40]. The Gujarat Government has been pro-
active on renewable energy front by implementing progressive
policies and creating a conducive environment. The efforts are not
limited to promoting renewable energy. The government has also
made great strides in load management by making investments to
agricultural feeders. Pilot programs for the solar-powered water
pumps have been some examples of these efforts [40]. We obtained
real demand, solar and wind generation data from State Load
Dispatch Center for Gujarat, India for four years with daily resolu-
tion from April 1st, 2012 to March 31st, 2016. The demand data
constitute nearly 6000 agricultural feeders spread across four dis-
tribution companies and serving over 1.2 million agricultural cus-
tomers. Due to the length and resolution of the data obtained, the
systems are modelled with a planning horizon of one year and time
period of one day. As shown in Table 1, there is an increasing trend
in the installed capacities of solar and wind sources in Gujarat.



Table 1
Installed capacity in India’s Gujarat region (MW).

2012e2013 2013e2014 2014e2015 2015e2016

Solar 824 887 1003 1127
Wind 3091 3352 3542 3933
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Thus, we divide the real generation data of each year by installed
capacity and use normalized generation, i.e. the output of solar and
wind energy systems with 1 MWp capacity. We consider each
year’s data as a different scenario in the stochastic programming
models that we propose, therefore capturing the uncertainty of
demand and generation. Fig. 1 shows the agricultural load and
normalized generation for each year. We observe that the agricul-
tural load is similar for all years, so normalization is not needed. As
the load does not deviate throughout the years drastically, making
investment decisions based on the previous observations is
reasonable for agriculture sector.

Nathan and Modi in [41] show that it is possible to generate
between 2.7% and 14.6% of the electricity demand in 32 regions of
Fig. 1. Daily demand and normalized generation data in Gujarat, India for four years. Curves
generation and demand-normalized wind generation data is presented in the left and righ
higher fluctuation than solar generation.
the United States by using solar panels without storage so that 95%
of the solar generation is utilized and baseload generation is pre-
served. Similarly, we first perform preliminary calculations on
meeting agricultural load with solar or wind energy without any
non-renewable energy source and demand response in order to
gain a rough understanding of the baseline system performance.
We quantify the amount of curtailed energy by multiplying the
normalized generation output with a capacity value that would be
needed to meet the desired percentage of the demand and taking
the difference between this value and the demand. Fig. 2 shows
that curtailment in the wind case is quite significant. More specif-
ically, in order to meet 90% of the agricultural load without any
demand response, approximately 15% of the solar generation needs
to be curtailed. With wind generation, curtailment increases to 60%
in order to meet the same demand. The system achieved lower
curtailment with solar generation since both agricultural load for
irrigation and solar generation decrease on rainy days and increase
on sunny days. As shown in Fig. 1, wind energy sources generate
more electricity in a year but with wider fluctuations. Average
yearly normalized generation is 1643 MWh and 1465 MWh for
show the demand and bars show the normalized generation. Demand-normalized solar
t columns, respectively. We observe that wind generation is more in quantity and has



Fig. 2. Curtailed generation when different percentages of demand are met using (a) solar and (b) wind energy. In order to meet 90% of the agricultural load without any demand
response, approximately 15% of the solar generation needs to be curtailed, whereas curtailment amount is about 60% in the wind case.

Table 2
Parameters for renewable energy systems [2].

System Component Lifetime (LTg) Investment Cost

Solar Panel 30 years $1.6/Wp
Wind Turbine 20 years $2/Wp
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wind and solar energy, respectively. Therefore if demand response
programs can better utilize curtailed energy, we expect significant
benefits when these programs are paired with wind generation.
3.2. Numerical results

We integrate diesel generation into the system as a proxy for
fast-ramping, dispatchable energy generation, which costs $250/
MWh [37] and examine the role of demand response on the system
sizing. Table 2 shows the lifetime and the cost parameters used
throughout the paper for solar and wind energy systems. In our
objective function, we minimize the costs of both first stage and
time indexed second stage decision variables for our one year
planning horizon. Therefore, we annualize the investment cost of
the sources by an annualization factor, which is defined as
ði=ð1� ð1þ iÞ�LTg Þ, where i is the 5% interest rate and LTg is the
lifetime of the renewable energy system g. All of our mathematical
models are solved optimally using IBM ILOG CPLEX Studio IDE
12.8.0, therefore we present the optimal value for each system
described.

Although it may not be practical, we analyze different load
shifting policies up to 24 days as demand shift periods in order to
fully capture changes in the optimal solar and wind generation
capacity. In Fig. 3 (a,b), we show that more solar than wind gen-
eration capacity is installed in their respective optimal solutions.
Fig. 3 (c,d) indicate that solar generationmeets the agricultural load
more cost effectively than wind and the gap between the annual
system cost for solar and wind case remains stable when demand
shift period is extended from 0 days to 24 days. For both wind and
solar cases, system costs decline down to 88% of the initial cost
when demand is allowed to shift over the full 24 days.

We also use other performance metrics such as expected diesel
generation amount and curtailed renewable energy amount to
compare solar case and wind case further in Fig. 4. We find that the
values for all these metrics in the solar case are less than wind case
for all demand shift periods. Moreover, Fig. 4 (a,b) show that diesel
energy meets between 1% and 5% of the total demand in solar case
for all demand shift periods; this quantity is between 20% and 35%
in wind case. Lastly, as seen in Fig. 4 (c,d), curtailed energy is be-
tween 14.5% and 19% of generation in the solar case, and between
18% and 31% in wind case.
Additionally, we find that the effect of demand response on the

sizing of renewable energy systems and diesel usage is highly
dependent on the demand shift period. According to Fig. 3 (a,b) and
Fig. 4(a and b), the system generation capacity increases and
amount of diesel generation declines when the demand shift
period is between 0 and 8 days in the solar case, and between 0 and
4 days in the wind case. In contrast, the system generation capacity
decreases and the amount of diesel generation increases for larger
demand shift periods, especially for the wind scenario. We can
understand these effects by considering the following: initially,
excess demand is shifted to days with curtailed renewable energy,
and the demand curve more closely aligns with the renewable
energy generation profile. At this stage, an additional 1 MWp ca-
pacity of solar panels or wind turbines can satisfy more demand
with less curtailment and the unit cost of 1 MWp solar or wind
capacity per kWh of demand met declines. Consequently, installed
capacity increases and the unit cost of renewable energy sources
declines until a certain demand shift period. Hereafter, further
extensions in demand shift period have a reverse effect, which can
be explained by the variability in renewable energy generation
throughout the year.

Fig. 5 (a,b) and (c,d) display the changes in the supply and de-
mand curves due to load shifting when the demand shift period is 4
days and 24 days, respectively. In the wind scenario with 4 days
shifting, curtailment occurs between 10th and 80th days as a result
of the intra-annual variability in wind generation. When the de-
mand shift period is extended to 24 days, demand is smoothed out
to utilize the curtailed energy between 10th and 80th days, so
smaller system capacity would be enough for 10th and 80th days.
However, the renewable energy generation between 250th and
350th days becomes scarcer due to declining installed capacity,
resulting in more consumption of diesel energy. As a result of the
trade-off between the cost of diesel generation and the investment
cost of wind energy system in the objective function, the reduction
in the investment cost dominates the increase in the diesel gen-
eration cost and thus, the annual system cost descends. At these
higher demand shifting periods, an increase in diesel consumption
allows for a more substantial decrease in installed renewable
generation capacity.

Fig. 6 demonstrates that the reduction in annual system cost per
shifted load is always less than or equal to the unit cost of diesel
generation, which is $250/MWh. Therefore, installing additional 1
MWp of solar or wind capacity becomes reasonable if the marginal
cost of renewable energy sources is less than the unit cost of diesel
energy in the presence of demand response. This marginal cost
value can also be used as a benchmark for the incentives that can be



Fig. 3. The effect of demand response on (a,b) installed capacity and (c,d) percentage change in annualized system cost. Required solar installed capacity is more than wind capacity
in their respective optimal solutions. Solar generation meets the same amount of load in a more cost effective manner than wind for all demand shift periods.
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offered to the farmers.
In this analysis, the data with finer resolution might seem to

help obtainmore accurate results. However, our initial experiments
performed by 3-hourly data (obtained by distributing the daily
demand data in alternative ways using different distribution as-
sumptions) showed that the effect of the finer resolution beyond
daily data might not provide further improvements on the results.
Moreover, to observe the importance of uncertainties considered in
the recourse problem, we calculated the Value of Stochastic Solu-
tion (VSS) for solar and wind cases. To calculate the VSS, we first
replaced the random quantities by their mean values and solved
the “mean - value” problem to obtain a first stage solution, x. We fix
the first stage solution at x and solve the problem for all scenarios.
The difference between the obtained objective value and the so-
lution of our original problem gives us the VSS [39]. We observe
that the VSS is about 2% on average for all demand shift periods and
goes up to 3% of the stochastic programming solution for some
cases. Lastly, as in [2,37], we assume that the unit cost of diesel
generation is constant, although in practice diesel price changes
overtime. Our preliminary analysis shows that the daily variation in
diesel price does not change themainmessage that we deliver with
our results.

3.3. Sensitivity analysis on the cost of dispatchable generation

To understand the effect of the ratio between the cost of the
dispactable source and investment cost of the renewable sources,
we perform a sensitivity analysis on the cost of the diesel energy
keeping the investment cost of the renewable constant. Tables 3
and 4 show the cost of the systems, installed capacities, expected
curtailment amounts as a percentage of generation and expected
diesel usage as a percentage of demand when the unit cost of diesel
energy are doubled and halved for solar and wind cases and when
demand shift period is equal to 0,1,5 and 10. We observe that in the
solar case, diesel contribution in the system decreases about 2% and
increases about 8% when the cost of diesel generation is doubled
and halved, respectively. However, in the wind case more than 10%
decrease is observed in the diesel usage when the diesel cost is
doubled, whereas the diesel contribution is increased bymore than
30% when the cost is halved. Moreover, curtailment amounts in the
wind case are also more sensitive to diesel cost than the solar case.
Here we conclude that demand response can offer a reasonable
alternative to carbon-intensive generation if the price of such
generation increases.

4. Discussion

In the previous section, we analyzed the impact of different load
shifting policies when there is a dispatchable source in the system.
Here, in Section 4.1 we first remove this source from the system and
examine the role of load shifting to meet a predetermined portion
of the agricultural demand. Then, we present another model to
include energy storage as an alternative to demand response pro-
gram in Section 4.2.

4.1. Effect of demand response on partial demand

When there is only intermittent renewable sources in the sys-
tem, it is not guaranteed to meet the demand completely. To un-
derstand the benefit of load shifting in this case, we develop a new
model that aims to minimize the investment cost of the renewable
system while meeting a pre-determined ratio of the demand. We
compare the results of alternative load shifting cases and no load
shifting case. In our model, the scenario dependent variables are



Fig. 4. The effect of demand response on (a,b) diesel usage and (c,d) curtailment amount observed in the system. Diesel energy decreases down to 1% from 5% of the total demand in
the solar case as the demand shift period increases. This quantity reduces from 35% to 20% in the wind case. Demand response significantly help reduce the curtailment amount
(from 31% to 18%) in the wind case, which is still higher than the curtailment amount of the solar case for all demand shift periods.

Fig. 5. Generation and demand profiles for solar and wind in 2012/2013 scenario. High amount of curtailment occurs in the wind case between 10th and 80th days when the
demand shift period is 4 days. When the demand shift period is extended to 24 days, demand is smoothed out to utilize the curtailed energy between 10th and 80th days, hence
smaller system capacity suffices compared to 4 days shifting. However, the renewable energy generation between 250th and 350th days becomes scarcer due to declining installed
capacity, resulting in more consumption of diesel energy.
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Fig. 6. Annual system cost reduction per shifted load compared to the case where demand shift period is zero. (a) Solar Energy (b) Wind Energy.
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the amount of generation used or spilled and the amount of de-
mand unmet or shifted at each time period for each scenario. The
model that we propose for the aforementioned system is the
following:

mincICap
s:t:

(11)

�
dtu �Dnet

tu
�� gtuCap � Dunmet

tu ct;u (12)

X

t2T

X

u2U

puDunmet
tu � aunmet

X

t2T

X

u2U

pudtu

ð6Þ � ð8Þ
(13)

Dshift
tku ;Cap;Dunmet

tu � 0; Dnet
tu free ct; k;u (14)

The model minimizes the cost of required installed capacity.
Constraint (12) finds the amount of unmet demand for each day in
each scenario. Constraint (13) states that the total expected unmet
demand in a year cannot exceed the specified percentage of the
total expected demand. Constraints (6)e(8) are used for demand
shift. Lastly, constraint (14) provides the domain constraint.

Fig. 7 shows the installed capacity level in (a,b), and curtailment
amounts in (c,d) for solar and wind energy alternatives. Here, we
present the results for a maximum shift period of 7 days as the
Table 3
Sensitivity analysis for diesel generation cost in solar case when demand is shifted.

Cost Change Demand Shift Period ¼ 0 Demand Shift Per

cD=2 cD 2cD cD=2 cD

Cost of System (MM$) 1773 1995 2185 1743 1943
Installed Capacity (MWp) 13,536 16,485 18,215 13,713 16,56
Curtailment % of Generation 11 19 25 10 19
% of Demand Met with Diesel 13 5 3 12 4

Table 4
Sensitivity analysis for diesel generation cost in wind case when demand is shifted.

Cost Change Demand Shift Period ¼ 0 Demand Shift Pe

cD=2 cD 2cD cD=2 cD

Cost of System (MM$) 2455 3702 5112 2439 3518
Installed Capacity (MWp) 4409 11,716 18,121 4676 13,146
Curtailment % of Generation 9 31 46 8 31
% of Demand Met with Diesel 68 35 21 66 27
results do not chance significantly after that period. We observe
that if at least 75% of the demand has to be met and demand shift
period is 7 days, a solar system with a capacity of 11,070 MWp is
installed and 4.5% of the generation would be curtailed. For the
wind case, to meet the same amount of demand, the system size
and the curtailment ratio become 12,910 MWp and 27%,
respectively.

If we require that 100% of the demand be met and specify the
demand shift period as 7 days, curtailment reaches 30% in a 19,879
MWp solar system and 70% in a 41,803MWpwind system, a finding
which demonstrates that solar energy can meet the demand with
less capacity and less curtailed energy when no backup source is
used. Fig. 8 (a,b) show the annual cost savings due to flexible de-
mand, savings which are defined as the decrease in instalment cost
compared to the case where demand shift period is zero, i.e. when
load shifting is not possible. Since Fig. 8 (a,b) are concave, we can
conclude that the marginal cost savings (the difference in between
the annual cost savings when demand shift period is k days and k�
1 days) decreases as the demand shift period increases for both
solar and wind cases (i.e. we realize decreasing marginal returns
from increasing demand flexibility). Therefore, large initial annual
cost savings can be obtained from shifting agricultural demand
over a relatively small portion of time. For a systemwith only solar
generation, annual cost savings with a demand shift period of one
day are 40% of the savings when the demand shift period is seven
days.
iod ¼ 1 Demand Shift Period ¼ 5 Demand Shift Period ¼ 10

2cD cD=2 cD 2cD cD=2 cD 2cD

2076 1700 1859 1932 1682 1790 1809
1 18,321 14,001 16,578 17,637 13,735 16,474 17,302

24 9 17 21 7 16 19
2 9 2 1 9 1 0

riod ¼ 1 Demand Shift Period ¼ 5 Demand Shift Period ¼ 10

2cD cD=2 cD 2cD cD=2 cD 2cD

4606 2403 3347 4022 2363 3298 3864
18,548 5021 14,041 18,827 5424 12,475 19,402
43 6 30 40 4 25 40
16 62 21 10 58 25 7



Fig. 7. Effect of demand response when demand is partially met without a backup source. (a,b) installed capacity (c,d) curtailed generation (% of total generation). Installed capacity
and the curtailment values are higher in the wind case to meet the same amount of demand. The gap between solar and wind energy widens if the system needs to meet a larger
portion of the demand or a lower demand shift period is imposed.
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4.2. Generation shift - storage

Demand response programs and energy storage are both
considered as control mechanisms that help reduce the intermit-
tency of the renewable energy systems [42]. Load shifting as a
demand response program changes the pattern in the demand side
and helps match supply and demand. The supply side counterpart
of this effect can be achieved with energy storage. For this purpose,
we examine the energy storage as a substitute for load shifting
programs. The cost of the storage necessary to replace the flexibility
provided by load shifting gives an upper bound for the demand
response budget when the dispatchable generation is limited in the
system. Therefore, in a new model provided below, we fix the
renewable capacity and the amount of diesel used with the values
Fig. 8. Cost savings when demand is partially met without a backup source for (a) solar case
flexibility.
obtained from the dispatchable generation model for each demand
shift period and minimize the size of the storage needed in the
system.

mincsS
s:t:

(15)

gtuCap¼ Pusedtu þ Pstrtu þ Pspilltu ct;u (16)

dtu ¼ Prlstu þ Pusedtu þ Pdieseltu ct;u (17)
, and (b) wind case. Decreasing marginal returns are observed from increasing demand



Table 5
Lifetime and cost of storage types [43].

Storage Type Investment Cost Lifetime Annualized Investment Cost

(USD/kWh) (Years) (USD/MWh.year)

PHS 21 60 1109
CAES 53 50 2903
FloodedLA 147 9 20,681
VRLA 263 9 37,001
NaS 368 17 32,641

Fig. 9. (a,b) Annual storage cost, (c,d) storage cost per shifted demand and (e,f) storage
cost per expected demand when storage is considered as a substitute for demand
response.
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Pstu ¼ Psðt�1Þu � Prlstu
1
g
þ Pstrtu g ct;u (18)

Pstu � S ct;u (19)

Ps0;u ¼ Ps365;u ¼ 0 cu (20)

X

t2T

X

u2U

puPdieseltu � Ldiesel (21)

S; Pdieseltu ; Pstu; P
str
tu ; P

rls
tu; P

used
tu ; Pspilltu � 0 ct; k;u (22)

The objective function (15) minimizes the cost of the required
storage capacity. Constraint (16) states that renewable energy
generated can be directly used, stored or spilled at each time period
and scenario. In constraint (17), demand is satisfied with directly
used renewable energy, diesel, or from the storage at each time
period and scenario. Constraint (18) defines the energy balance
equation of the storage. Constraint (19) guarantees that the amount
of energy stored at each time period cannot exceed the storage
capacity. Constraint (20) defines the beginning and ending condi-
tions of the storage. Constraint (21) limits the diesel amount used in
the system and constraint (22) defines the domain constraints.

Table 5 shows the lifetime and investment costs of different
storage systems taken from the literature [43]. The cost values are
annualized with the same formula in Section 3.2. Fig. 9 (a,b) exhibit
the additional annual storage cost that would be required to
compensate for the absence of demand flexibility when the
renewable generation capacity and the diesel amounts are fixed to
the values obtained from the dispatchable model results. Here, the
annual cost of storage can provide another benchmark for the
incentive that can be offered to the farmers to adopt the demand
response program. In Fig. 9 (c,d), the storage cost is divided by the
amount of shifted demand obtained in the load shifting case for
each demand shift period. In solar case, storage cost remains the
same after the demand shift period is increased to more than 15
days. However, storage cost per shifted demand keeps increasing
because the amount of shifted demand decreases. Although some
storage types such as pumped hydro storage and compressed air
storage may not be practical to use in the agricultural context, we
included them into our analysis to have more variation among the
available options in terms of cost and lifetime of the systems. If the
planner wants to avoid investing on energy storage and allows 7
days period for demand shift, the amount of incentive that can be
given is between $1.35/kWh and $4.05/kWh in solar systems and is
between $2.68/kWh and $10.89/kWh in wind systems. Therefore,
we observe that energy storage is an expensive substitute for de-
mand response. Lastly, Fig. 9 (e,f) show the storage cost per ex-
pected demand, therefore are very similar to Fig. 9 (a,b).
5. Conclusion

In this study, we evaluate the value of demand response on
sizing decision of solar and wind energy sources for agricultural
energy demand. We present a framework for energy practitioners
who might be interested in building decentralized systems oper-
ating mainly with renewable energy systems for water pumps.
With this framework, which involves scenario based stochastic
programming models, we evaluate the alternative load shifting
policies depending on the flexibility of agricultural demand. We
show that introducing load shifting programs for agricultural
consumers not necessarily decreases the peak demand as opposed
to many demand response programs and large savings can be ob-
tained from shifting this type of demand over a relatively small
portion of time.

We present a case study from Gujarat, India and run our models
for wind and solar cases separately to observe which renewable
source is more coherent with agricultural load. We show that solar
energy is better aligned with the agricultural energy demand than
wind throughout the year. Therefore, demand response is more
helpful when it is used with the wind generation. More specifically,
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the system cost can be reduced by 10% with a demand shift period
of 10 days in solar case, whereas this number is 5 days in the wind
case.

When the renewable systems are coupled with an expensive
dispatchable source such as diesel, it is not very easy to predict the
installed capacity of renewables and diesel usage. Therefore, an
optimization model is needed to be solved with the existing
renewable potential and demand data. If the aim is to reduce the
contribution of dispatchable source in the system, the ideal de-
mand shift period is 4 days in our wind case and 8 days in the solar
case. Increasing the amount of time over which the agricultural
load can be distributed does not help reduce the dispatchable
source requirement; however, increasing the demand shift period
up to 13 days in solar case and 20 days in wind case results in
significantly better utilization of renewable sources. In the solar
case, average shifted load in a month is 1% of the demand for de-
mand shift period of 1 day, increases up to 4.5% for the period of 10
days and remains almost the same afterwards. In the wind case,
average shifted demand amount in a month varies between 4% and
10% for the increasing number of demand shift periods. This
number reaches up to 8% quickly for the demand shift periods of 4
days.

Finally, when solar and wind energy are installed without any
backup source in order tomeet portions of the agricultural demand,
required installed generation capacity and curtailment are lower in
the solar case compared to the wind case for all demand shift pe-
riods and all percentages of the demand met. We also show that
energy storage can be a convenient control mechanism for the
integration of renewables; however, is an expensive substitute for
demand response programs for agricultural load.
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