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Abstract—TIrrigation can greatly increase the income of small-
holder farmers in sub-Saharan Africa. By providing information
about current irrigation utilization, or lack thereof, we seek to
encourage investment in irrigation systems and their supporting
infrastructure. In this paper, we describe the design, prototyping,
and testing of a novel, cost-effective, and reliable computer
vision system that is capable of locating irrigated plots at
scale. Our system will be mounted to a vehicle and record the
depth of objects in the camera’s view while the vehicle is in
motion. The GPS coordinates of objects are computed based on
estimated depth, vehicle coordinates, and orientation, available
from included sensors. We tested our prototype on objects at
various distances from the system and achieved feasible accuracy
with acceptable error in the estimated depth. In the future,
we hope to deploy the system in parts of sub-Saharan Africa,
to detect and geolocate irrigated agricultural plots during the
dry season. Then we plan to use that collected data to inform
and train machine learning models that use remote sensing and
satellite imagery.

Index Terms—Computer Vision, Irrigation, Agriculture
(SDG2), Productive Use, Clean Energy (SDG7), Economic
Growth (SDGS8)

I. INTRODUCTION

The impetus for our system stems from the simple idea that
irrigated farmland produces significantly higher crop yields.
Irrigation is necessary for horticulture, and horticultural crops
are more valuable. As of 2013, there were approximately 33
million smallholder farms in sub-Saharan Africa, comprising
80% of the total farms and contributing 90% of the food
supply. Africa’s population continues to grow rapidly which
increases the importance of these farms and their productivity
throughout the year [2]. According to a 2007 report by the
USDA Foreign Agricultural Service, rain-fed agricultural work
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employed 75% of the workforce in Senegal with only 5%
of the available land using irrigation [3]. From pilot pro-
grams done by The Quadracci Sustainable Engineering Lab at
Columbia University (@SEL) in Senegal, we know anecdotally
that the majority of affordable irrigation systems on the market
in Senegal are inefficient gas or diesel surface pumps [4].
From visits to several different regions in Africa, members
of qSEL observed that many farmers do not irrigate their
crops. Pilot projects by the same lab in Senegal have shown
that irrigation can add additional growing seasons, effectively
doubling farmer incomes in some instances. Farmers rely on
growing and selling produce to make money. To grow a steady
supply of crops, farmers need steady access to water. Dry
seasons last most of the year in many regions of sub-Saharan
Africa, with abbreviated rainy seasons lasting only one to
three months. As such rainfall collection alone cannot meet
farmers’ needs. Even in regions with extended rainy seasons,
it is impossible to ensure constant rainfall at the correct rate,
making irrigation a boon for production there as well.
Geolocating irrigated and non-irrigated farmland provides
several benefits. First, pump-driven electricity demand can
be mapped and overlaid on-grid power transmission lines to
show off-grid consumption. This would encourage investment
from utility providers to electrify rural parts of the continent.
Electrification would decrease the initial capital cost of irri-
gation for farmers, which in turn incentivizes more farmers
to irrigate. As was found in qSEL’s pilot pumping systems
in Senegal, when the cost to irrigate is low enough farmers
water more, especially in dry seasons, and thereby experience
greater yields. With the GDP of sub-Saharan Africa currently
directly tied to agriculture, an increase in production to feed
the increasingly large population can only grow the region’s
world standing. Second, a visualization of areas with high



farming activity but little irrigation could promote investment
in irrigation systems by businesses and aid organizations in
those locations. Data is needed to motivate investment, we
seek to provide appropriate data.

II. BACKGROUND

The process of detecting irrigated farmland at scale bears
several challenges. In Europe and the United States, farm plots
of several hundred acres are easily detectable from space.
Their African counterparts are commonly just an acre or less
and are thus much harder to detect from that distance. In the
United States, the USDA executes an Agriculture Census that
provides a complete list of U.S. farms and ranches, small and
large, across the country. It also provides a data query tool
so this information can be swiftly processed and redirected
to other studies or pursuits [1]. The information available for
our target area is much more limited and so data collection
initiatives are vital.

To date, there are several data collection technologies that
can be employed. Individual farmer surveys, taken in an
unbiased distribution, could provide the most accuracy but can
cost between $20 to $40 per farmer from our experience. This
expense, extended across the entire continent of Africa is out
of reach with our resources and potentially unbalanced with
the benefit of such a survey. Drones could be used to capture
a high detail aerial view and GPS coordinates directly above
desired features. However, drone technology is limited by very
short battery life, high expense per unit, and difficulty in flight
training. This makes the process of mapping large regions of
land infeasible. There is some street view imagery available
from mapping services, like Google and OpenStreetCam, but
it is limited in rural regions of Africa. Finally, pre-existing
satellite data on its own is not enough as irrigated farmland
plots in Africa tend to be small and exhibit many similar
features to say a cluster of trees when viewed from space.

Our solution is to gather GPS coordinates of irrigated
agricultural plots from a moving field vehicle as it goes about
other duties or on dedicated scouting trips. This method can
be used as a middle ground between expensive hand-collected
surveys and satellite imagery analysis, which is speculative
without ground truth. We aim to lower the cost and increase the
availability of ground truth for the training of satellite imagery
machine learning models.
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Fig. 1. Concept Sketch.

III. CONCEPT

Our solution for cost-effective, reliable irrigation detection
at scale is designed to be a portable multi-camera stereo vision
system mounted to a car. As the car is moving, we want to
gather the GPS coordinates of each irrigated field we pass. In
order to realize this goal, the following information is required
at each timestamp:

o The camera system’s geolocation

o The system’s orientation in relation to its GPS coordinates

o The distance between our target and the camera system

o The angle of the target from the camera’s capture plane

Fig. 1 shows how the requisite information can be used to
extrapolate the GPS coordinates of irrigated plots. Our system
is capable of collecting all the requisite information at any
given time. The system’s GPS coordinates and orientation are
captured by onboard sensors and are logged constantly with
a corresponding timestamp. The distance between the target
object and the camera unit is estimated by stereo vision, a
computer vision technique to extract 3D information from
multiple 2D views of a scene. By recording videos with two
adjacent cameras simultaneously the depth of objects in both
frames can be estimated. A timestamp is recorded with each
video frame taken.

After video capture, human taggers will manually examine
the video frames and identify the ones with irrigated plots in
the middle of the scene, to fix the angle between the object
and camera capture plane at approximately 90 degrees. By
matching timestamps, the estimated depth of plots in tagged
frames is paired with the camera system geolocation and
orientation. Then the GPS coordinates of irrigated plots can
be calculated.

Note that the area of farmland is not being detected with
this method, simply the location of an irrigated piece of land
within view of the roadside. However, the geolocation itself
is practically valuable as this tagged GPS data can then be
translated to its respective place on satellite imagery to support
the training of a machine learning model being fed high-
resolution satellite imagery. Our street view tagging serves as a
quasi-ground truth that prevents satellite imagery from being
overly speculative and allows irrigation detection to happen
effectively without having to speak to each farmer. We believe
our solution has the potential to be deployed in much of the
developing world.

IV. PROTOTYPE

Initial prototypes were built for lab and local testing. Further
units are being prepared to send in small numbers to data
collection teams in Africa.

A. Hardware Architecture

The prototype units were designed to be built with all off
the shelf components for around 500 USD per system. This
price allows for feature detection on one side of the car and
only includes materials, not shipping or assembly. The system
consists of an enclosure that houses power converters and
energy storage, a Raspberry Pi 34+ compute module board,



Fig. 2. Prototype Mounted to a Car.

and the requisite sensors. The Raspberry Pi is a single board
computer running Raspbian Linux, an offshoot of Debian for
small ARM Broadcom processors. Two 5 megapixel fisheye
cameras with OV5647 CMOS sensors are mounted on the
exterior of the enclosure with a baseline distance between
the cameras of 200mm. The other requisite sensors include a
MTK3339 GPS module to capture the location of the camera
system and thereby the car, a Bosch BNOO055 9-DOF sensor
to retrieve the Euler and Quaternion vectors of our camera
system, and a DS3231 precision RTC IC to maintain system
time. The units can be powered with an AC/DC wall power
supply or a DC car cigarette lighter port and stores energy in
a Lithium Ion battery to avoid problems presented by power
fluctuations. Fig. 2 shows our prototype mounted to a car.

V. SOFTWARE PIPELINE

In the software pipeline, we describe how we extract the
geolocation of irrigated plots from field videos.

A. Calibration

Camera calibration is the first step in the software pipeline.
It is the process of estimating the parameters needed to
construct a mathematical model of the camera system. We
use the OpenCV implementation of the multiplane calibration
technique (also known as Zhang’s method) [5]. The calibration
is completed by taking pictures of a chessboard pattern from
multiple perspectives and solving the homogeneous linear
system that is produced after matching the same points in the
left and right cameras.

The estimated camera parameters are then used to repro-
ject the left and right images (also called a stereo pair) to
the same plane, making the disparity only in the horizontal
direction. This step is called rectification and is a common pre-
processing practice for depth analysis using stereo vision. An
example of rectification using our system is shown in Fig. 3.

B. Data Capture

Data capture occurs on our car-mounted prototype units.
Captured information is stored on a microSD card which

Fig. 3. Before (top pair) and after (bottom pair) rectification. Note in the
bottom rectified pair, distorted edges are reprojected to be straight and at the
same horizontal level (shown by red lines).

can be removed after testing for easy data transfer to a
central computing resource where additional processing and
computations can be applied.

Before capturing data in the field, we calibrate the camera
system to obtain necessary parameters for rectification. When
taking stereo videos, each frame is rectified before it is written
to disk. This allows our post-processing to directly work with
coplanar stereo pairs that only have horizontal disparity.
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Fig. 4. Object Tagging and Result Display in GUL

C. Object Tagging

The next step is to tag objects of interest, such as irrigated
plots, from all video frames taken. We prepared a simple
graphical user interface to support manual tagging and the
depth estimation of tagged objects.

Upon inputting required files, the GUI allows human taggers
to examine all stereo pairs in the videos selected. The human
tagger then manually chooses the frame(s) where the object
of interest is present in the middle of the scene and marks the
object by clicking on the left stereo image. A red dot will be
drawn at the selected location (Fig. 4, left).

After the user selects to proceed, the next window shows
the estimated depth of all tagged objects. (Fig. 4, right)

VI. DEPTH ESTIMATION

Estimating the depth of tagged objects starts with creating
a disparity map. For a given rectified stereo pair, the disparity



map gives us the horizontal distance between a pixel in the left
frame and right frame. The intuition is that the farther an object
is from the cameras, the smaller the disparity of the object
between left and right images is. There are many algorithms
to compute the disparity map. We experimented with Block
Matching and Semi-global Block Matching (SGBM), both of
which are provided with OpenCV functionality [6]. We found
that the SGBM algorithm gave us better results.

Next, we perform a post-filtering technique, based on the
Fast Guided Global Interpolation Algorithm for depth and
motion [7], to refine the quality of the disparity map by
improving consistency between the disparity map and source
images. This is a common practice for improving the quality
of a disparity map. We used the OpenCV functionality for this
filtering algorithm.

Once we have a filtered disparity map, we can calculate the
distance, Z, with the following formula. [8]

Z=(f+b)/d (1)

Where f is the focal length (estimated by calibration), b is
the baseline (distance between two cameras, measured from set
up), and d is the disparity. We plug the disparity of the tagged
object into the formula to calculate the distance. Fig. 4, right
shows an example of displaying disparity map and estimated
depth in the GUI, the depth results can be exported to a CSV.

The estimated depth, along with vehicle GPS coordinates
and orientation (both available from sensor outputs) will be
used to reconstruct the GPS coordinates of tagged objects.

VII. INTERIM RESULTS

We tested the depth estimation functionality of our proto-
type on objects at various distances from the cameras. We used
the SGBM algorithm, post-filtering, and optimized SGBM
parameters for best results. Fig. 5 includes one stereo pair and
corresponding disparity map for each of the three test cases
we present.

Fig. 5. Tissue Box, Loft, and Trees with SGBM.

For the first test case, we calculated a distance of 188mm for
a tissue box 200mm away (6% error). For the second test case,

we calculated a distance of 3120mm for a person standing
3352mm away (about 7% error). For the third test case, we
calculated a distance of 10899mm for trees 9754mm away
(about 11% error).

The accuracy of depth estimation is crucial, as the recon-
structed GPS coordinates of objects are directly dependent on
the depth. These are relatively small increases in error for
very large increases in distance. We hope to retain this error
pattern for distances on the order of hundreds of meters up to
a kilometer.

VIII. CONCLUSION

In this paper, we describe the design, prototyping, and initial
testing of a vehicle-mounted computer vision system that
allows cheap and reliable irrigation detection and geolocation
at scale. Our interim results show that the system is able to
feasibly calculate the distance of objects meters away with
6% - 11% error. We hope to expand our project by refining
our system to process features in moving videos one kilometer
away and further reduce our error, thus improving the accuracy
of geolocation.

In the future, we hope to deploy the system in parts of
sub-Saharan Africa to detect and locate irrigated agricultural
plots during the dry season, and use the collected data to
train satellite imagery machine learning models. We argue that
by showing the need for irrigation with our collected data,
we can encourage investment in irrigation systems and the
infrastructure that supports them. We believe this technology
can be a contributing solution improve agricultural production
in sub-Saharan Africa.
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