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ABSTRACT
To extract information at scale, researchers increasingly apply se-
mantic segmentation techniques to remotely-sensed imagery.While
fully-supervised learning enables accurate pixel-wise segmentation,
compiling the exhaustive datasets required is often prohibitively ex-
pensive. As a result, many non-urban settings lack the ground-truth
needed for accurate segmentation. Existing open source infrastruc-
ture data for these regions can be inexact and non-exhaustive. Open
source infrastructure annotations like OpenStreetMaps are repre-
sentative of this issue: while OpenStreetMaps labels provide global
insights to road and building footprints, noisy and partial annota-
tions limit the performance of segmentation algorithms that learn
from them.

In this paper, we present a novel and generalizable two-stage
framework that enables improved pixel-wise image segmentation
given misaligned and missing annotations. First, we introduce the
Alignment Correction Network to rectify incorrectly registered
open source labels. Next, we demonstrate a segmentation model
– the Pointer Segmentation Network – that uses corrected labels
to predict infrastructure footprints despite missing annotations.
We test sequential performance on the Aerial Imagery for Roof
Segmentation dataset, achieving a mean intersection-over-union
score of 0.79; more importantly, model performance remains stable
as we decrease the fraction of annotations present. We demonstrate
the transferability of our method to lower quality data sources, by
applying the Alignment Correction Network to OpenStreetMaps
labels to correct building footprints; we also demonstrate the accu-
racy of the Pointer Segmentation Network in predicting cropland
boundaries in California from medium resolution data. Overall,
our methodology is robust for multiple applications with varied
amounts of training data present, thus offering a method to extract
reliable information from noisy, partial data.
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1 INTRODUCTION
Processing remotely-sensed imagery is a promising approach to
evaluate ground conditions at scale for little cost. Algorithms that in-
take satellite imagery have accurately measured crop type [34],[21],
cropped area [11], building coverage [41] [40], urbanization [1],
and road networks [6] [42]. However, successful implementation
of image segmentation algorithms for remote sensing applications
depends on large amounts of data and high-quality annotations.
Wealthy, urbanized settings can more readily apply segmentation

Figure 1: Types of label noise present in open source data.
Building footprints are the class of interest.

algorithms, due to either the presence of or the ability to collect
significant amounts of carefully annotated data. In contrast, more
rural regions often lack the means to exhaustively collect ground
truth data. Some open source datasets exist for such settings, and
by successfully coupling these annotations with remotely sensed
imagery, researchers can gain insights into the status of infrastruc-
ture and development where well-curated sources of these data do
not exist. [20] [2].
Although these global open source ground truth datasets – e.g.
OpenStreetMaps (OSM) – offer large amounts of labels for use at
no cost, the annotations within suffer from multiple types of noise
[28] [4]: missing or omitted annotations, defined as objects being
present in the image and not existing in the label [28]; misaligned
annotations occur when annotations are translated and/or rotated
from its true position [38]; and incorrect annotations – annotations
that do not directly correspond to the object of interest in the image.
Figure 1 presents examples of these three types of label noise.

Noisy datasets present a training challenge when using tradi-
tional segmentation algorithms, as the model cannot learn to as-
sociate image features and target labels when the relationship is
obscured by noise. To address the issues of misaligned and omitted
annotations, and in order to extract information from imperfect
data, we present a simple and generalizable method for pixel-wise
image segmentation. First, we address annotation misalignment by
proposing an Alignment Correction Network (ACN). With a small
number of images and human verified ground truth annotations,
the ACN learns to correct misaligned labels. Next, the corrected
open source annotations are used to train the Pointer Segmenta-
tion Network (PSN), a model which takes in a point location and
identifies the object containing that point. Learning associations
from a representative point is a widely acknowledged method of
object detection: [5] notes that an intuitive way for humans to refer
to an object is through the action of pointing. By ‘pointing-out’ the
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object instance of interest, our network ignores other instances
that may not have corresponding annotations, therefore prevent-
ing performance degradation caused by annotation-less instances
within the image. As a result, our sequential approach presents
a method for handling misaligned data as well as varying levels
of label completeness without explicitly changing the loss func-
tion to compensate for noise. While our approach cannot replace
large amounts of carefully annotated outlines, it can complement
existing open source datasets and algorithms, reduce the cost of
obtaining large amounts of full annotations, and allow researchers
to extract information from imperfect datasets. This paper’s key
contributions are as follows:

• We introduce the Alignment Correction Network (ACN), a
means to verify and correct misaligned annotations using a
small amount of human verified ground truth labeled data.

• We propose the Pointer Segmentation Network (PSN), a
model that can reliably predict polygon boundaries on remotely-
sensed imagery despite omitted training annotations and
without requiring any bespoke loss functions.

• We demonstrate the applicability of our methodology to
three different segmentation problems: building footprint
detection with a highly-accurate dataset, building footprint
detection with noisier training data, and cropland boundary
prediction.

Taken as a whole, our approach enables resource constrained actors
to use large amounts of misaligned and partial labels – coupled with
a very small amount of human verified ground truth annotations –
to train image segmentation algorithms for a variety of tasks. The
rest of the paper is organized as follows: In Related Work, we discuss
related literature; inMethods, we describe our novel methodological
contributions; in Results, we present results for the ACN and the
PSN for all segmentation tasks; and in Conclusion, we restate our
most salient findings.

2 RELATEDWORK
Computer vision researchers have recently made numerous ad-
vances in semantic segmentation, in applying state-of-the art tech-
niques to remote sensed imagery, and in learning fromnoisy datasets;
we discuss some important contributions to the literature below.

Existing Segmentation Approaches
Primarily based on improvements to deep convolutional neural
networks (DCNN) architectures, researchers have achieved record
performances for a variety of different segmentation tasks. Fully
convolutional encoder-decoder type architectures – one type of
DCNN – take in an image and output a per-pixel prediction for the
class of interest [25]. Some architectures use symmetric networks
with skip connections to perform pixel-wise predictions [33] [3].
Alternatively, two-stage detection algorithms first perform region
proposal – areas that have a high likelihood of containing the object
of interest – and then detect objects within the identified regions
[17] [16] [31]. Modifications to two-stage detection algorithms have
enabled semantic segmentation of images, whereby individual pix-
els in an image are placed into one of a number of classes [18]
[22]. Development of these segmentation architectures has been
facilitated by large, comprehensive datasets which enable the im-
plementation of these algorithms in a fully supervised approach:

here, every object in the image and its corresponding annotation
are used in the learning process [12] [27] [23].

Applying Deep Learning to Remote Sensed Imagery
Multiple projects have leveraged satellite imagery to answer various
questions on land use, road quality, object detection, consumption
expenditure: by linking sparse ground truth with abundant imagery,
researchers can extrapolate trends in existing data to areas where
labeled data do not exist [35], [10], [19]. Alternatively, some works
have proposed neural network architectures that sidestep training
data constraints and the relative lack of labeled ground-truth in
remote areas [24] [30]. Jean et al. combine Google maps daytime
images (provided by DigitalGlobe), nighttime lighting, and survey
data to estimate poverty for multiple African countries [29]. High
resolution daytime images were used to train a model to predict
nighttime lights as measured by DMSP-OLS; features extracted
from the last layer of the model were then used to estimate house-
hold expenditure or wealth. Results from this paper suggest that
predictions about economic development can be made from remote
sensed data using features derived from imagery; this insight pro-
vides additional motivation for developing methods that extract
information from noisy imagery datasets.

Learning From Noisy Annotations
The problem of poor-quality training data, especially in rural ar-
eas, for segmentation tasks is well known: [26] acknowledge the
variability in coverage of open source data in Kenya and observe
significant degradation of coverage as one moves away from ur-
ban settings. Coverage degradation from urban to rural areas is
also seen in South Africa[36], Brazil[7] and Botswana[39]. [37] esti-
mates the effects of multiple types of training data noise, including
misalignment and missing annotations, finding that as noise levels
increase, both precision and recall decrease. For applications such
as measuring building or field area which are useful in downstream
analysis of wealth, crop yield and more, high noise levels decrease
the ability to successfully use segmentation algorithms. Several
works tackle the problem of learning from imperfect labels. [28]
propose new loss functions to address noisy labels in aerial images.
[38] [15] both focus on the issue of misalignment: [15] uses a self-
supervised approach to align cadaster maps, and while the method
proposed in [38] maximizes the correlation between annotations
and outputs from a building prediction CNN, it assumes buildings
in small groups have the same alignment error. Our two-stage ap-
proach builds upon existing convolutional frameworks common to
many noise correction approaches. However our approach relies
on the well-known binary cross entropy loss function, addresses
both misalignment and omitted annotation, and does not require
that all misalignments are identical. Thus serving as an attractive
alternative when noisy labels are present.

3 METHODS
Traditional segmentation methods take an image input xi and aim
to learn a function f (x) that predicts a single channel label υ̂i
containing all building instances present in the image. Equation 1
shows the learned function given xi , where υai is the single channel
label of instance a in image xi and there are a total of A instances



Figure 2: Summary of our two-stage approach to segment fromnoisy annotations. Stage 1: TheACNuses an image (xi ) and label
(yai ) with a single misaligned annotation to predict a corrected annotation v̂ai containing the realigned annotation. Random
shifts between±10 pixels are applied tovai to obtainyai . The network is trainedwith a small set of images (x) and verified ground
truth annotations (v). Stage 2: A large noisy training set is first realigned with the ACN. Realigned, incomplete annotations
are used for supervision. The PSN uses selected points from available instances, xi and v̂i to learn the segmentation task.

in that image:

f (xi ) → υ̂i

s .t . υ̂i = υ̂
1
i ∪ υ̂2i ... ∪ υ̂Ai

(1)

3.1 Alignment Correction Network
Misalignment occurs when there is a registration difference be-
tween an object in an image and its annotation. In remote sensing,
misaligned annotations may occur for a number of reasons, in-
cluding human error and imprecise projections of the image [15].
There are two types of annotation alignment errors: 1) translation
errors, where the annotation is shifted relative to the object, and
2) rotation errors, where the annotation is rotated relative to the
object. [38] suggest that translation errors are more frequent for
OpenStreetMaps in rural areas. Thus in this paper, we only ad-
dress translation errors present in open source data. We propose
an Alignment Correction Network (ACN) that takes in an image
xi and a label yai containing one misaligned instance a. The ACN
outputs a label υ̂ai containing the predicted, corrected annotation.
υ̂ai is compared to υai to learn optimal weights for the network.
During training, the misaligned label yai is obtained by applying
random x-y shifts, between ±10 pixels to υai . Sensitivity to the ±10
pixels translation shift is discussed in the results.

When multiple misaligned instances are present in an image, the
instances are corrected independently. This approach is chosen for
two reasons: it allows instances within an image to have varying
degrees of translation error and it also enables the network to be
robust to incomplete labels with missing instances. Here, a small
dataset of images (x ) and carefully verified ground truth labels (υ)
are used to train the ACN as shown in Stage 1 of Figure 2.

3.2 Pointer Segmentation Network
Assumingm available annotations – υ1i ... υ

m
i , wherem < A – com-

mon algorithms will struggle to implement Equation 1, as some
predicted object instances will not have corresponding true labels
for comparison during training. To address this issue, we intro-
duce the PSN, a network that learns to segment an image using
onlym available annotations. The PSN takes as inputs an image
xi and a single channel of points specifying selected instances to
be segmented, and it outputs a segmentation mask only for the
selected instances. We specify the fraction of instances to be used
for training using a parameter α , where α is the number of selected
instances divided by the number of available instances. Equation 2
shows this formulation, where pi (α) specifies a point within each
selected instance, and υ̂i (α) denotes the predicted label for instances
specified by pi (α):

f (xi ,pi (α)) → υ̂i (α) (2)

By including a single channel containing points pi (α), our PSN
segments only instances that are associated with the points. This
offers two benefits: first, we simplify the learning task to specify
instances of interest, and second, the network can be trained with
common binary cross entropy loss. To handle varying extents of
missing annotations, the model is trained by randomly picking α
for every image in each epoch; at inference time, all instances of
interest are specified using points.

In the sequential training configuration, the ACN is used to
correct a training dataset that is then inputted to the PSN for object
segmentation; this process is shown in Stage 2 of Figure 2. Binary
cross-entropy loss is used for all networks. Both ACN and PSN use
the same baseline architecture (lightUNet) shown in Appendix A



Figure 3: CDF of the number of buildings present in 128x128
patches of the 30cm-resampled AIRS dataset.

and further explained in the results, albeit modified by the number
of input channels.

4 DATA
Three separate datasets are used to train and test the performance
of the ACN and the PSN, all described below. During training and
testing, we only use images that contain labels.

4.1 Aerial Imagery for Roof Segmentation
We use the Aerial Imagery for Roof Segmentation (AIRS) dataset
to establish baseline performances for both the ACN and PSN. The
AIRS dataset covers most of Christchurch (457km2), New Zealand
and consists of orthorectified aerial images (RGB) at a spatial reso-
lution of 7.5 cm with over 220,000 building annotations, split into
a training set (Tset ) and a validation set (Vset ). The AIRS dataset
provides all building footprints within the dataset coverage area.
To mimic more readily-available data, we resample the imagery
to 30 cm, an approach which creates imagery more similar to that
provided by Google Earth. Next, we slice the resampled images
into 128 by 128 pixel patches and discard all patches in which the
area occupied by buildings is less than 10 % of the total area –
this methodology ensures that patches with multiple buildings are
selected. Other than this basic filtering, we preserve Tset and Vset .

After resampling and filtering, we obtain 99,501 and 10,108
patches from the Tset and Vset , respectively. We further split Tset
into 80:20 fractions, where 80% is used for training and 20% for
validation. Vset is withheld and used as a test set to evaluate perfor-
mance. Figure 3 shows the fraction of patches for a given number of
buildings in Tset and Vset . Note that some patches contain partial
buildings.

4.2 OpenStreetMaps
Humanitarian OpenStreetMaps (OSM), through free, community-
driven annotation efforts, provides building footprints by country
on their Humanitarian Data Exchange (HDX) platform. While this

data provides the best (and only) ground truth for many parts of
the world, label quality is highly heterogeneous, both in terms of
footprint alignment and coverage. In order to test the performance
of the ACN on these incomplete and misaligned building footprints,
we pair OSM annotations for Kenya [13] with selected DigitalGlobe
tiles from Western Kenya (a box enclosed by 0.176 S, 0.263 S, 34.365
E, and 34.453 E) and closer to Nairobi (a box enclosed by 1.230 S,
1.318 S, 36.738 E, and 36.826 E). The DigitalGlobe tiles have a 50 cm
spatial resolution and were collected between 2013 and 2016. Slices
measuring 128 by 128 pixels were generated from the DigitalGlobe
images, which we then couple with overlapping OSM building
labels. We generated human verified ground truth annotations for
500 of the image patches.

4.3 California Statewide Cropping Map
We also use crop maps and decameter imagery to demonstrate
the flexibility of the PSN. The California Department of Water
Resources provides a Statewide CroppingMap for 2016 [32]; we pair
this shapefile with Sentinel-2 satellite imagery to learn to extract
crop extents [14]. Red, blue, green, and near-infrared bands – all at
10m resolution – are acquired from a satellite pass on August 30,
2016; the bands cover the same spatial extent as Sentinel tile 11SKA
(a box enclosed by 37.027 N, 36.011 N, 120.371 W, and 119.112W).
Cropped polygons larger than 500m2 are taken from the California
cropping map and are eroded by 5m on all sides to ensure that
field boundaries are distinct at a 10m spatial resolution. We split
the 110km x 110km tile into images patches measuring 128 by 128
pixels and remove all slices that do not cover any cropped areas,
leaving a total of 5,681 patches containing an average of 17 fields
per patch; these images are split into training, validation, and test
sets at a ratio of 60/20/20.

5 RESULTS
For all model testing, we report the mean intersection-over-union
(mIOU), defined as the intersection of the predicted and true label
footprints divided by the union of the same footprints, averaged
across the testing dataset.

5.1 Baseline Model
We establish the performance of the baseline model (lightUNet)
used for both the ACN and PSN by comparing the lightUNet to the
UNet architecture proposed by DeepSenseAI [9]. The lightUNet
1 architecture is modified from [9] to perform segmentation with
fewer parameters. We refer to the model proposed by [9] as Base-
UNet; we train both the Base-UNet and lightUNet models for 30
epochs on the 30 cm resampled AIRS dataset [8], and we report their
mIOU. Table 1 shows that our lightUNet model achieves comparable
performance to the Base-UNet when performing routine building
segmentation. Our lightUNet model has about half the number of
parameters as the Base-UNet and therefore takes less time to train.

5.2 Alignment Correction Network
Vset in the AIRS dataset is used to evaluate the performance of the
ACN. Random translations were generated between ± 10 pixels for

1See Appendix A for details about the convolutions.



Table 1: mIOU of Base-UNet[9] and lightUNet for routine
segmentation with complete and well-aligned labels. Both
models are trained on 30 cm resampled AIRS imagery.

Models mIOU

Base-UNet 0.86
lightUNet 0.85

the xy-axis and applied to ground truth AIRS annotations, result-
ing in unique translation shifts for each object in an image. The
introduction of noise through random translation yields a baseline
mIOU of 0.55 for comparison. The shifted annotations together with
the images are fed into the ACN, and the corrected annotations
are compared to the true annotations to drive the learning process.
We report the mIOU on Vset when varying amounts of Tset data
are used for training. Random translations between ± 10 pixel are
applied to all objects in Vset . When the ACN is trained with 800,
400 and 240 images, the corresponding mIOU on all images in Vset
are 0.81, 0.77 and 0.67 respectively, compared to the baseline of 0.55.
This suggests that the ACN performs better when more images are
used but can learn with only a couple hundred training images.

Table 2: mIOU before and after ACN correction.

mIOU
Translation Shift (± pixels) Before ACN After ACN

0 to 5 0.63 0.81
5 to 10 0.40 0.73
10 to 15 0.26 0.46
15 to 20 0.18 0.28

Using the ACNmodel trained with 400 images and random trans-
lation shifts between ± 10 pixels, we evaluate the robustness of the
ACN to varying levels of translation shifts. Table 2 shows mIOU
before and after ACN correct, when different ranges of transla-
tions shifts are applied to Vset . Across all translation shifts the
ACN is able to perform some realignment of annotations, even for
translations (>10 pixels) which the model was never trained on.

We observe two types of alignment correction as outputs from
the ACN: translations and translations plus infilling. Infilling occurs
when the misaligned annotation area is less than the building area.
In the translation plus infilling case, the model both shifts the
annotation and fills the missing portion of the annotation. Overflow
is sometimes observed upon correcting the label, resulting in the
corrected annotation exceeding the building outline. Figure 4 shows
examples of both types of corrections when training on 800 images.
This figure demonstrates how the ACN learns over time: green
outlines show predictions from the ACN and blue outlines show
misaligned annotations which the ACN takes as input.

5.3 Pointer Segmentation Network
As an alternative to traditional segmentation models, we propose
the Pointer Segmentation Network (PSN), a network that takes in
an additional channel with points of interest and returns a single
channel output with annotations. The PSNwas evaluated separately

Figure 4: Types of annotation corrections performed by the
ACN when trained with 800 images. Green shows corrected
annotations. Blue shows misaligned annotations.

from the Alignment Correction Network (ACN); this section focuses
on reporting segmentation performance on the AIRS dataset when
partial – but well-aligned – labels are used. To appropriately com-
pare the PSN with the lightUNet, we evaluate model performance
using all annotations in every image of Vset . Here, we compare
the ability of both networks to segment every building instance
in the image, having learned with missing annotations. Table 3
reports the performance of the lightUNet and the PSN with varying
fractions of selected annotations (α ): As α decreases, performance
of the PSN remains robust, indicating that the network still learns
the segmentation task despite missing annotations. By specifying
the points of interest, the PSN outperforms the lightUNet model.

Table 3 also presents results for two different methods of acquir-
ing the required building points: using building centroids versus
using a randomly generated point from within the corresponding
annotation. By comparing the performance of the PSN using cen-
troids with that of randomly generated points, the best annotation
strategy to be used at inference can be determined. We find that the
PSN performs better when centroids are used to train the model:
This suggests that annotators should strive to extract points near
the center of buildings to ensure better segmentation outcomes
during inference. Additionally, because the extent of missing anno-
tations may not be known a priori for datasets, we evaluate how the
network handles heterogeneous (Het.) amounts of label complete-
ness by sampling α from a random uniform distribution between 0
and 1. The uniform distribution ensures an equal chance for alpha
to take on any value between 0 and 1. α is resampled for each image
during every training epoch. Table 3 shows that the PSN remains
robust at performing segmentation and works for a heterogeneous
α that varies across images. Although α will likely differ across



Table 3: mIOU of PSN and lightUNet for all buildings in Vset
images, when trained with varying α .

mIOU

α = 1 PSN (centroid) 0.90
lightUNet (centroid) 0.85

α = 0.7 PSN (centroid) 0.89
PSN (non-centroid) 0.83
lightUNet (centroid) 0.53

α = 0.5 PSN (centroid) 0.87
lightUNet (centroid) 0.18

α= Het. PSN (centroid) 0.87
lightUNet (centroid) 0.71

images but remain constant for a given image at a particular time,
during training we allow α to change over every training epoch for
a given image, enabling our approach to be robust against images
taken at different times where new construction may have occurred.

Figure 5 shows how the PSN learns – and where non-PSN type
networks fail – when learning with missing annotations. The figure
shows some outputs of the PSN and the lightUNet model when both
are trained with α = 0.7 and used to predict all building instances
present within the image. Although both networks are trained with
missing annotations, generated annotations from the PSN are more
visually accurate.

Figure 5: Annotations fromPSN and lightUNetmodelswhen
trainedwith α = 0.7. Predictions aremade for all building in-
stances in the image and are compared to the ground truth.

5.4 Sequential Testing
The AIRS dataset is used to evaluate the sequential performance of
our two-stage methodology shown in Stage 2 of Figure 2, whereby
the ACN and PSN are trained and tested sequentially. Using Tset ,
we establish two training datasets for the sequential process: T1,
containing misaligned labels generated from the true Tset ; and T2,
containing ACN-corrected T1 labels. The ACN model trained with
400 training images is used to generate T2. The noise present in
both training datasets is captured by the mIOU listed in Table 4.
The PSN and lightUNet models are trained on T1 and T2 using
α = Het with an identical implementation of label withholding
to that described in the previous section. The trained models are
used to segment Vset images; we compare predicted annotations
to the true annotations to attain the performance metrics reported
in Table 4.

Table 4 shows that, with α = Het , the PSN performs significantly
better than the lightUNet when trained on either misaligned la-
bels (T1) or ACN-corrected labels (T2). Again, we find that with
incomplete labels, regardless of alignment quality, the PSN out-
performs the lightUNet. Moreover, in both training configurations,
PSN mIOU performance nears that of the training dataset. As a
result, we conclude that the PSN is able to predict object extents at
a similar accuracy to that of the training dataset.

Table 4: Performance of the segmentation architectures. The
ACN is trained with 400 images; both segmentation net-
works are trained with α = Het . available annotations.

mIOU

T1: Misaligned train dataset 0.57
PSN (trained on T1) 0.54
lightUNet (trained on T1) 0.17

T2: ACN-corrected train dataset 0.81
PSN (trained on T2) 0.79
lightUNet (trained on T2) 0.74

Figure 6 presents outputs from the PSN when trained with ACN-
corrected annotations: corrected annotations from the ACN are
shown in blue and predicted outputs from the PSN are shown in
green. In the left half of Figure 6, we present properly corrected
ACN-labels and demonstrate that the PSN is able to predict build-
ing footprints accurately when corrected annotations are accurate.
The right half of the figure shows poorly corrected annotations:
These corrected annotations fall on roads, grass, or across the actual
building extent. In these cases, the PSN tries to predict a building
footprint where there is no building. Accordingly, we conclude that
improvements to the ACN can further improve PSN performance, as
more accurate training labels will allow for better label prediction.
Nonetheless, in the presence of misaligned annotations and partial
labels, we are able to achieve better performance with our sequen-
tial architecture than with traditional segmentation approaches.



Figure 6: Sample images showing PSN performance when
trained with corrected annotations. Blue footprints show
ACN-corrected annotations. Green footprints show PSN-
predicted annotations trained with α = Het . and 400 ACN-
corrected labels. PSN performance is dependent on the qual-
ity of corrected annotations.

5.5 ACN Application: Realignment of OSM
Annotations

In many parts of the world, ground truth is rare or nonexistent;
moreover, what resources do exist often have significant accuracy
issues. Despite potential shortcomings, these datasets can provide
unique insight into conditions on the ground, and if their quality can
be improved, they offer immense value to researchers. To confirm
the performance of our realignment method on noisier images and
labels, we tested the ACN on OSM building polygons in Kenya,
a dataset containing considerable amounts of label misalignment.
Of the 500 human-verified ground truth image labels generated
for Kenya, 400 are used to train the ACN and 100 to validate. The
extent of noise in OSM labels is measured by comparing the labels
to the human-verified ground truth labels. mIOUs of 0.30 and 0.31
for the train and validation data respectively were recorded, when
comparing OSM labels to their ground truth counterparts. OSM
training labels are used to train the ACN and the trained model is
ran on the 100 validation labels. A 50 % improvement in mIOU from
0.31 to 0.47 is observed on the 100 validation images. This suggests
that our approach is transferable to open source labels and offers
gains even with noiser images and labels, using a small dataset.

Figure 7 shows a sampling of ACN-corrected OSM annotations
for images in the validation dataset: Hand-labelled annotation are
shown in blue, OSM annotations are shown in red and corrected
annotations are shown in green. Overall, we find that the ACN
is able to correct misaligned OSM annotations both in rural and
urban regions. In rural Western Kenya, where buildings tend to
be smaller, the ACN shifts OSM footprints to better align with the
buildings. We observe that the noisier image quality makes it more
difficult for the ACN to identify extremely small buildings. In more
urbanized Nairobi, the ACN also improves the alignment of OSM
annotations, albeit with some failure cases.

Figure 7: Hand-labelled annotations, OSM annotations and
ACN-corrected annotations. The ACN is trained on 400 im-
ages from Western Kenya and Nairobi, and improves label
quality despite the noisier training data.

5.6 PSN Application: Cropland Segmentation
Next, we apply the PSN to the task of cropland segmentation using
Sentinel-2 imagery and a 2016 California cropping map. Knowing
exact field outlines provides valuable information to farmers, plan-
ners, and governments; however, a lack of reliable, location-specific
ground truth often hampers these efforts. We demonstrate the abil-
ity to accurately learn cropland extents using only a subset of fields,
instead of requiring the comprehensive set of training polygons
that would be necessary for traditional segmentation networks.
Similar to previously described tests, we quantify the performance
of the PSN in recreating these field boundaries as we select a cer-
tain fraction of the annotations, comparing results to those of the
lightUNet. Table 5 presents these results.

At all fractions of available training data shown in the table, the
PSN outperforms the lightUNet in segmenting croplands. After 40
training epochs, the PSN is able to predict all field boundaries for the
test set across both values of α . When trained with all annotations
(α = 1), the PSN achieves a mIOU of 0.92. In contrast, the lightUNet
only reaches a mIOU of 0.75 when α = 1, and sees its performance

Table 5: mIOU for all field boundaries in test set, for varying
α values.

mIOU

α = 1 PSN 0.92
lightUNet 0.75

α = 0.75 PSN 0.91
lightUNet 0.69



Figure 8: Sample images and ground truth labels showing
cropland extent in California; also shown in green are PSN
and lightUNet predicted footprints α = 0.75, overlaid on true
cropland polygons, shown in blue. PSN predictions remain
highly accurate. Comparatively, the lightUNet predicts only
a portion of the crop extents correctly

significantly diminish as field boundaries are withheld. Figure 8
shows the PSN- and lightUNet - recreated field polygons when
the models are trained with α = 0.75 and are asked to predict all
polygons within an image. The true cropland polygons are shown in
blue while the predicted polygons are shown in green; all examples
shown come from the test set.

These results demonstrate the viability of the PSN in delineating
field boundaries and the preferability of our method over a baseline
alternative, when the acquisition of field boundaries is expensive. In
locations with low data availability and smaller, non-uniform field
boundaries, the PSN provides a reliable method for determining
cropped area polygons.

6 CONCLUSION
As the demand for extracting information from satellite imagery
increases, the value of reliable, transferable object segmentation
methodologies – especially ones that compensate for noise and in-
accuracies in training data – increases in parallel. In this paper, we
present a novel and generalizable two-stage segmentation approach
that address common issues in applying deep learning approaches
to remotely-sensed imagery. First, we present the Alignment Cor-
rection Network (ACN), a model which learns to correct misaligned
object annotations. We test the ACN on a set of alignment errors,
including i) misalignment of the AIRS dataset, ii) existing and sub-
stantial misalignment errors within the OSM Kenyan building foot-
print dataset. Overall, we find that the ACN significantly improves
annotation alignment accuracy.

We also introduce the Pointer Segmentation Network (PSN), a
model which reliably predicts an object’s extent using only a point

from the object’s interior. The value of the PSN lies in learning to
segment objects within an image despite incomplete or missing
annotations, an issue which both hinders traditional segmentation
efforts and is common in many ground-truth datasets. We train
and test the PSN on the AIRS dataset and find that the model can
accurately predict building extent regardless of the fraction of avail-
able annotations present or where the training point resides within
the object. We also evaluate the performance of the PSN for crop-
land segmentation using Sentinel imagery and a 2016 California
cropland map as inputs, demonstrating that the model can reli-
ably learn cropland polygons regardless of the fraction of available
annotations. Overall, for all testing configurations – those which
vary the fraction of available training annotations and those which
change the location of where the training point lies– and for both
object segmentation applications presented – building footprint
and cropland extent predictions – the PSN outperforms a baseline
segmentation model.

Lastly, we sequentially link the ACN and PSN to demonstrate
the ability of the combined networks to accurately segment objects
having learnt from misaligned and incomplete training data. Taken
together, we envision our proposed networks providing value to
the community of researchers and scientists looking to extract
information from widely-available satellite imagery and unreliable
ground-truth datasets.
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A ARCHITECTURE

Figure 9: Architecture used for both the Alignment Correction Network (ACN) and the Pointer Segmentation Network (PSN).
Four input channels are used for both ACN and PSN, while three are used for the lightUNet. This network is modified from [9]
by reducing the number of filters to 48 andmaintaining the same filter size through out the network. In addition, the network
uses dropout in addition to batch normalization after every epoch.
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