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While past research has shown that providing residents with feedback about their electricity usage can
reduce demand and its associated environmental burdens, some questions remain regarding what makes
such feedback most effective. We followed the electricity usage of 36 residents who each received 14
feedback messages over 2 months. Using approaches borrowed from Natural-Language-Processing, feed-
backs were generated automatically, using 10 features in random combinations. Unlike in previous stud-
ies, each resident received varying types of messages over time. In 504 observations, the average
prompted reduction in electricity usage was 11 ± 3%, compared to a control group of 89 residents who
received no messages. Feedback types prompting the largest reductions were self-comparisons with
one’s own earlier usage (average reduction 14%) and messages of high variety from one feedback-cycle
to the next (average reduction 16%). Comparisons with neighbors did not prompt higher reductions on
average. Instead, they prompted reductions only when a resident’s recent usage happened to be higher
than the average usage of neighbors, and increases when the reverse was true. This behavior was exhib-
ited by all residents and is likely explained by a norm-conforming mean reversion of residents to their
neighbors’ average usage, rather than an anti-conform ‘‘boomerang” behavior previously suggested in
similar contexts.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background and previous studies

In 2017, residential buildings used 32% of US electricity [1], an
amount responsible for 9% of domestic greenhouse-gas emissions
[2]. To reduce usage, residents can install efficient technology
(e.g., LED lights or smart devices [3]) or change their behavior
(e.g., turning off unneeded lights), with the former sometimes
deemed less effective [4] due to the associated out-of-pocket costs.

Most strategies to prompt electricity usage reductions fall into
one or more of three categories [5]: (i) Pecuniary incentives such
as higher electricity prices [6]; (ii) in-house displays to continu-
ously inform residents about their usage, separately reviewed by
Faruqui et al. [7] and recently employed by Schultz et al. [8] and
Wood et al. [9]; and (iii) periodic feedbacks via, e.g., door hangers
in apartment buildings [10], monthly or quarterly hard copy mail-
ings distributed by utilities such as OPower’s ‘‘home energy report”
[11,12], or emails (as in this study). While most studies meter the
electricity usage for an apartment or a single family home as a
whole, some also consider the consumption of individual devices
(e.g., refrigerator, washer/dryer, television set) and/or their link
to self-reported household activities [13]. This is done to prompt
higher electricity savings by providing residents with more granu-
lar information [14–16], and/or to study via which devices resi-
dents are able to save the most electricity [17,18]. In this
context, consumers’ misconceptions about which of their devices
contribute the most to total electricity usage have been discussed
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Nomenclature

Rdate Average treatment vs. control on specific date (any date
in baseline or feedback period) [Table 2]

BAr Baseline adjustment for resident r in treatment group
[Table 2]

BAr Baseline adjustment for entire treatment group [Table 2]

Rdate,net Average treatment vs. control on specific date (during
feedback period only) [Table 2]

Rr,f Effect of treatment of resident r, in response to feedback
f [Table 3]

Rr,all f Effect of treatment on resident r, averaged across all 14
feedback rounds [Table 3]

rt,all f Effect of treatment on resident r, averaged across all 14
feedback rounds [Table 3]

pr,f Usage of resident r (relative to control) during days
ahead of feedback f [Table 4]

p*r,f Usage of resident r (relative to other treated apart-
ments) during days ahead of feedback f [Table 4]

Dpr,f Change in usage of resident r (relative to control) from
prior to after receiving feedback f [Table 4]

SEM Standard Error of the (Sample) Mean
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as a crucial reason for households’ inefficient action to reduce
usage [19].

With respect to periodic feedbacks, various reviews and meta
studies have analyzed which feedback features tend to reduce
usage the most [5,7,17,20–27], including how this can inform reg-
ulatory policies [28]. For example, past experiments have found
that the context in which electricity usage is presented can affect
the prompted degree of reduction: Asensio and Delmas found that
sending participants in the US health and environment-oriented
feedback prompted a 8–10% reduction, which persisted throughout
the 14-week experiment (14 emailed feedbacks) while cost-
oriented feedback lost its effectiveness after just a few weeks
[17]. The higher effectiveness of health-oriented feedback was also
shown by Chen et al. in a similar study in India [29]. Similarly,
when varying the metric of expressing energy use, Jain et al. found
that invoking environmental externalities (e.g., CO2 emissions) was
more effective than direct energy units (kWh) [25].

Overall, previous studies suggest that feedbacks ‘‘need to be tar-
geted to be most effective” [26]. But previous research has also
pointed to 3 sets of nuanced findings that warrant further study
to allow for said targeting:

(i) Social comparisons: Many strategies to reduce residential
energy usage employ some form of ‘‘social marketing” [30]
– even if this effect is not always acknowledged by the recip-
ients [31] – and recent qualitative studies indicate that peo-
ple’s social relationships affect their usage [32]. Social
comparisons may be particularly useful in settings where a
direct financial incentive for energy conservation is lacking
because residents do not pay for their own electricity [33].
As discussed in Jain et al. [34] and mirrored in a meta anal-
ysis of 156 studies [5], feedbacks that include normative
social influence – such as informing residents how their
usage fares relative to that of peers – often prompts steeper
reductions (11.5%) than information only about their own
usage. However, in contrast, Harries et al. [35] have shown
with 316 residents, who received real time feedback about
their own current and past usage, that adding peer compar-
isons to such feedback did not significantly increase
reductions.

(ii) ‘‘Boomerang” effect: Feedback about electricity consumption
does not always yield the intended effect with all recipients
– a phenomenon sometimes referred to as ‘‘boomerang
effect” [10,12,36]. Asensio and Delmas found that health
and environment-oriented feedback led to a 1.9% increase
in the lowest decile of baseline electricity users whereas
other users reduced their usage [37]. Schultz et al. found that
residents who received door hangers comparing their usage
to that of neighbors increased their usage if their baseline
2

usage had been below average (again, other residents
reduced their usage) [10]. In contrast, Kažukauskas et al.,
in a similar study using in-house displays, did not observe
a boomerang effect in electricity usage [38].

(iii) Mitigation of boomerang effect: Alleviating the effect is desir-
able because it would lead, all else being equal, to larger
reductions of the cohort as a whole (by preventing the
increases of some cohort members). Schultz et al. found that
adding smiley faces to the door hangers for low baseline
users mitigated the boomerang effect [10]: Pairing the peer
comparison with injunctive norms – i.e., norms ‘‘that charac-
terize the perception of what most people approve or disap-
prove” [39] – modified the peer comparison’s effect. In
contrast, Allcott [11], in a study with tens of thousands of
participants, found that such injunctive elements were an
insignificant factor in prompting low consumers not to
increase their usage.

1.1. Objective and differentiation of current study

We introduce a scalable approach to generating feedback as a
means of prompting residential electricity usage reductions and
measuring its effectiveness, aimed at enabling large scale applica-
tions of eco-feedback and optimizing the content of each feedback
message so it can be as effective as possible in prompting usage
reductions. Borrowing techniques from Natural Language Process-
ing, messages are generated automatically, using 10 message fea-
tures in randomly varied combinations to create a multitude of
message types. As a novelty vis-à-vis previous approaches, resi-
dents are not pre-partitioned into subsets that would henceforth
receive the same message type and whose electricity reduction
would then be compared (e.g., compare the subset of residents that
always received information about their neighbors’ usage with the
subset that never received such information). Instead, each resi-
dent receives different feedback types during the course of the
experiment. This approach provides the ability to analyze not only
which feedback types are more effective than others for the aver-
age resident (as studied previously), but also how a feedback’s
effect on the same resident differed depending on (i) the resident’s
most recent usage; and (ii) the variability of messages from one
feedback to the next (not studied previously). We applied the
approach in a proof-of-concept case study, which followed the
electricity usage of 36 residents who each received 14 different
message types over the course ~2 months and compared their
usage to that of a control group of 89 residents during the same
time period (504 observations). We discuss potential advantages
of our approach and how it might be used in large scale field exper-
iments that could be carried out in collaboration with utilities.



Fig. 1. Overview of end-to-end system, from electricity metering at apartment-
level to emailing feedbacks. Feedback features and their phrasing were selected via
random number generation for each of the 14 feedbacks to the 36 residents (504
feedbacks). Feedbacks varied not only between residents but the same resident
received different features from one feedback to the next, thus providing a detailed
dataset to investigate which feedback features were the most effective in
prompting a change in electricity usage – and whether this feedback efficacy
differed, depending on when and to whom the feedback was sent.
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2. Methods

We first describe the experimental setup, its rationale, and how
observed changes in electricity usage were adjusted for (i) exoge-
nous effects (such as weather, weekday/weekend, and holidays);
and (ii) idiosyncratic effects such as personal differences in lifestyle
and consumption behavior that were present already during the
baseline, prior to receiving feedback (such as, e.g., predominantly
cooking at home versus dining out). The following sections provide
an overview of the novel feedback scheme, details on how the
feedbacks were generated and delivered, and how the electricity
data were analyzed in order to determine the efficacy of different
feedback features and how these varied depending on a resident’s
recent usage prior to each feedback.

In all reported results and figures, error intervals illustrate ±1
standard error of the mean (SEM [40]) of the sample average. Dif-
ferences between averages are tested for statistical significance via
two-tailed student t-tests (unequal variances) at the reported p-
value [40]. Because of the varying sample sizes across the different
analyses, we tested for three levels of statistical significance:
weakly significant (p < 0.10), significant (p < 0.05), and strongly
significant (p < 0.01).

2.1. Overview and rationale of experimental design

The experiment was carried out in 2017 in a New York City res-
idential rental building that comprises predominantly single-
occupied studio apartments of similar size. The electricity usage,
metered for each apartment separately, comprises air conditioning
(controlled by individual residents via their own thermostat),
lights, as well as plug-loads such as the refrigerator, electric oven,
microwave, entertainment system, computers and electronics, and
router/WiFi equipment. Apartments do not feature their own
washer/dryer. Rather, these are located centrally and thus do not
run on a resident’s own electricity meter (hence not captured in
our data and excluded from this study). After obtaining approval
from Columbia University’s Institutional Review Board, researchers
approached residents in the building lobby about receiving feed-
back on their electricity consumption. Residents were told that
the electricity data from previously installed smart meters was
available to be shared with residents, via emails. Any further expla-
nation was kept to a minimum, in an effort not to bias participants.

44% of residents gave their consent to participate in the study,
by sharing their first name, preferred email address, and apartment
number (so we could identify the correct meter). About 1 in 20 of
these participants later unsubscribed while the study was ongoing,
putting the final voluntary participation rate at 42%. The apart-
ments were divided into 4 groups: (i) Studios, whose residents
received the randomized, multi-featured feedbacks (n = 36; hence-
forth ‘‘treatment group”); (ii) studios whose residents received
other feedbacks as part of a different study (n = 34, not reported
here); (iii) studios whose residents had not volunteered to partic-
ipate and which were hence used as the control group (n = 91,
including 2 outliers (below)); and (iv) all remaining apartments,
which were excluded either because of their atypical size/layout
(1- or 2-bedroom apartments and studios located in the souterrain;
n = 45) or because their residents later unsubscribed (n = 5).

In order to determine how electricity usage changed as a result
of the feedback (as opposed to above exogenous and idiosyncratic
effects), data analyses observed the following principles (see equa-
tions in Tables 2–4):

(1) Control group adjustment: As in previous work [25], any
change in electricity usage in an apartment whose resident
received feedback was measured relative to the average
3

usage in the control group during the same time period. This
was necessary because both the treatment group and the
control group used more electricity during the feedback per-
iod than during the baseline period, most likely due to
increased air conditioning in warmer weather (see section
3.1). Similarly, during the feedback period itself, usage from
one feedback to the next may have further varied naturally
as a function of weekday/weekend or holidays. The control
group adjustment thus separated the effect of receiving
feedback on the one hand from the effects of said exogenous
factors on the other (assuming that, on average, the exoge-
nous factors would have affected the treatment group and
the control group equally if no feedback had been sent).

(2) Baseline adjustment: This corrects for any usage difference
between the treatment and the control group that may have
pre-dated the first feedback and would thus have to be net-
ted out from the effects attributed to feedback. In this study,
when measured for the treatment group on average, such
baseline difference happened to be negligible (0.04%, not
statistically different from zero; see section 3.1), meaning
that low electricity consumers were equally likely to opt in
to receiving feedback as high consumers. But the baseline
adjustment was still needed when analyzing the feedback
effect on individual residents whose electricity usage may
have started out significantly above or below control even
before the first feedback, because of their personal consump-
tion behavior.

Feedbacks were emailed to only one resident per apartment. For
simplicity of language, throughout our analyses we refer to the
electricity usage in a specific apartment (and any changes in that
usage) as the ‘‘resident’s usage” and the ‘‘resident’s reduction/in-
crease”, even though, on occasion, someone other than the desig-
nated recipient of the feedback may certainly have contributed to
the electricity usage in the respective apartment.
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Electricity usage was metered and feedback messages were
generated and emailed to residents automatically. Fig. 1 shows
an overview of the system, covering all steps from metering the
electricity usage to sending the emailed feedback messages. The
system’s individual steps are explained below.

2.2. Metering and processing of electricity usage

Apartment-level multi-channel electric power meters with scan
transponders (Quadlogic Controls Corporation�) had previously
been installed in the building. Every 15 minutes, an automated
cloud-based driver collected and stored data from these meters
into a Microsoft Azure� server using the Hypertext Transfer Protocol
(HTTP). Data was quality-checked to ensure that (i) no special
characters were present, which would indicate a transfer error;
and (ii) kWh readings increased monotonously over each 24 h (me-
ters recorded cumulative kWh and reset at midnight). After deter-
mining the time-window of peak usage for each apartment (see
below), only the total usage in each apartment for each day (0–
24 h local time) was retained for subsequent processing.

2.3. Overview of feedback scheme

In the approach developed for this study, residents in the ‘‘treat-
ment” group (i.e., those who received feedback) received automat-
ically generated, multi-featured, randomized feedbacks via email
approximately twice a week, at 10 am, on varying days of the
week. The design of each message varied in ten dimensions, hence-
forth referred to as ‘‘features”. Features constituted, for example,
whether the feedback included a graph or was text-only, in what
equivalent consumption unit the usage was contextualized (e.g.,
‘‘CO2 emissions” or ‘‘trees cut down”), whether the recipient’s
usage was compared to his/her own previous consumption or that
of peers, and in the sentiment of the text (e.g., ‘‘Great job!” for a
positive and ‘‘Unfortunately, . . .” for a negative sentiment). Cru-
cially, for every feedback message individually, the presence/ab-
sence of each of the features was determined randomly.
Accordingly, the features varied not only between residents, but
also, for the same resident, from one feedback to the next. The
same resident therefore observed a diversity of feedbacks over
time, not only because the data (i.e., their own electricity usage
Fig. 2. Overview of 10 message features (right) and their specific expressions and phra
otherwise). Two features, sentiment and equivalent consumption unit were always pres
consumption units). In the example message, 7 of the possible 10 features are present.

4

and/or that of their peers) changed from one feedback to the next,
but also because the feedback features that communicated said
data changed. An overview of the 10 possible features and an
example feedback are shown in Fig. 2. Each of the 10 features
and their combination into concise messages are explained in the
next section.

2.4. List of 10 feedback features and their possible expressions

The expressions for eight of the ten features were binary (true/-
false), simply denoting the presence or absence of a piece of infor-
mation in the feedback email. These binary features were: (1)
whether a graph was provided; (2) whether the resident’s own
usage was compared to the peer average in the treatment group
(see Results for definition of peers); (3) whether the resident’s
own usage prior to the current feedback was compared to his/her
usage in the previous feedback; (4) whether a projected monthly
electricity cost was provided (calculated at USD 0.20/kWh, based
on analysis of electricity invoices from Consolidated Edison, New
York); (5) whether the resident’s cost was compared to the peer-
average in the treatment group; (6) whether the cost projected
from the current feedback was compared to that projected from
his/her previous feedback; (7) whether a link to and summary of
a relevant news article was provided (details, see below); and
finally (8) whether the participant was told when their peak usage
time had occurred (‘‘day”, if 9 am to 6 pm; or ‘‘night”, otherwise).
Including information about their peak usage time may encourage
residents to load-shift some of their electricity usage, which is typ-
ically higher during the day time [41], to the night time, with the
underlying aim to alleviate stress on the grid (as an alternative
to other load profile optimization schemes such as market-based
mechanisms [42], wide-spread availability of building-level batter-
ies [43], connected vehicle storage [44], grid level storage [45], cen-
tral optimization [46] or apartment-redistribution of air
conditioning loads [47], or more efficient electric consumer prod-
ucts [3,48]).

In contrast to the above eight binary features, the two remain-
ing features, sentiment and equivalent consumption unit, deter-
mined the overall framing of the message and were always
present, but in one of multiple different expressions: (9) Sentiment
referred to the expressed attitude of the text, with three expres-
sing in one example (left). Eight features were binary (i.e. ‘‘true” if present, ‘‘false”
ent, but in one of multiple expressions (1 of 3 different sentiments; 1 of 5 different
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sions: positive (using words like ‘‘congratulations” and ‘‘good job”),
negative (‘‘unfortunately”, ‘‘worse”), or neutral (neither positive
nor negative). (10) The equivalent consumption unit determined
the context in which to communicate the amount of electricity a
resident had used during the days since the most recent feedback.
One of five expressions was possible: kilowatt-hours, equivalent
trees cut down annually (a unit shown to be successful in previous
work [25]), CO2, greenhouse gases, or equivalent miles driven in a
20 mpg vehicle. Conversion factors from kWh to each of these
equivalent consumption units were obtained based on US EPA
guidance [49] for the trees and miles driven metrics, and from
New York City’s greenhouse gas inventory [50] for the CO2 and
greenhouse gas metrics (Table 1).

2.5. Feedback generation

Template-based systems are a common way of generating
grammatically correct textual sentences from raw data [51]. A flex-
ible, template-based natural language generation system was
designed to generate textual feedbacks for this study. Several pos-
sible templates were defined for each feature. While each feature
template was manually specified, the system was able to automat-
ically combine templates for all possible configurations. For exam-
ple, the feedback message in Fig. 2 included seven features. But
other messages included as few as two features or as many as
ten. Any combination of features was possible, and the system
determined the appropriate phrase template for each combination.
Sometimes the message was generated as one sentence per fea-
ture, but more often, when multiple features were included, a sin-
gle sentence was generated that comprised two or more features.
Given this flexibility, our approach yielded a total of 55,560 possi-
ble different message types, which were then instantiated with the
respective values (e.g., the exact amount of electricity used by the
particular resident in the 3–5 days prior to the feedback). This is a
dramatic increase in message variety over an approach that would
have used a single, manually crafted sentence per each feature, and
the resulting messages tended to be much more fluent.

For example, if the consumption was expressed in the metric of
equivalent trees cut down, the template sentence conveying that
information was:

‘‘This feedback cycle ($duration), your electricity consumption
rate corresponded to a yearly cut down of \$trees trees”,

where \$duration and \$trees were replaced with the appropri-
ate values. An example of a single sentence containing multiple
features was:

‘‘Unfortunately, this is $power_prev_diff your consumption last
week and $power_avg_diff similar apartments in your building,
with the worst consumption in the $peak_time”,

where the three parameters were replaced with the appropriate
values. In this example, which featured the comparison with peers,
the comparison with self, and the peak time info, and which used a
negative sentiment, appropriate instantiations of \$power_prev_-
diff were adjusted to be ‘‘1.3 kWh more than” or ‘‘the same amount
Table 1
Equivalent units of consumption and respective conversion factors used in feedback
messages.

Consumption unit Conversion factor

Plain kWh n/a
Trees cut down yearly 0.273 trees per year/kWh
CO2 emissions 0.293 kg/kWh
Miles driven in a 20 mpg vehicle 1.009 miles/kWh
Greenhouse gas emissions 0.293 kg/kWh
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of energy as”, depending on the other features chosen for the mes-
sage. In case the $peak_time instantiation was ‘‘day time”, the sen-
tence was extended by the phrase ‘‘. . ., a time when the grid is most
stressed.”, in order to raise the issue of resiliency of energy avail-
ability, which has been shown to resonate with consumers [52].

The final feedback text was created by concatenating the tem-
plated and instantiated sentences for the specific combination of
features. The two features sentiment and equivalent consumption
unit modified all other templates – each with a variation of the
three sentiments and the five consumption units (see above). Fur-
thermore, if the randomly selected sentiment conflicted with a res-
ident’s actual usage in a particular feedback, thus resulting in an
inconsistent message (e.g., the resident used less electricity than
previously but the randomly selected sentiment was negative),
the sentiment feature for that particular feedback message was
changed to neutral.

As the final feature, a summary of a news article along with the
respective URL could be added at the end of the feedback, as fol-
lows: A story selected via standard search engines using pre-
defined, energy and environment-related keywords (such as, e.g.,
"power generation", "climate change") was summarized into 1–2
sentences. The summarizer used a recently developed approach
based on convolutional neural networks that selected salient news
article sentences such that all important topics in the article were
covered [53]. An example of such a summary, which was included
in a feedback was:

We think this news article may interest you: Temperatures 30 to 50
degrees Fahrenheit above normal hit parts of the region this past win-
ter. Several years ago New York City-based photographer Diane Tuft
decided she had to visit the Arctic to see the vanishing polar environ-
ment for herself. Read more at https://www.scientificamerican.com/
article/the-ominous-beauty-of-the-arctic-meltdown/.

Feedbacks that included this feature were on average less effec-
tive in prompting reduction. The average Rt,f was 8% (n = 248) for
feedbacks with a news story vs. 14% (n = 256) without (not shown
in Results). While not statistically significant, this result could indi-
cate that the news story simply made the message longer rather
than adding impactful information, or that the topics and key-
words based on which the news stories were selected were less
relevant to the recipients than we would have liked.

2.6. Feedback delivery

Our laboratory’s local SMTP server automatically delivered each
feedback to the resident’s preferred email address. Graphs, if pre-
sent, were embedded in the html at the beginning of the email
via the Python� package Plotly, along with an ‘‘unsubscribe” button
at the end. Over the course of the experiment, 504 emails were
sent (14 emails to each of the 36 residents in the treatment group).

2.7. Removing outlier apartments

To remove statistical outliers, including unoccupied apart-
ments, we first analyzed the distribution of the time-averaged

electricity usage over the course of the experiment (P
�
) across all

treatment and control apartments. As expected from zero-bound
metrics, the distribution was asymmetric, akin to a lognormal dis-
tribution. In our study the minimum load was 6 Watt, geometric
mean 168 Watt, arithmetic mean 192 Watt, maximum 634 Watt,
and the skew was 1.5 (n = 127 apartments). Because of the lognor-
mal shape, we then transformed each load P to ln P

� �
and subse-

quently treated as outliers any apartments whose ln P
� �

was
outside a ± 2 standard deviation tolerance around the average of
all ln P

� �
[40]. Two of the 127 apartments were thus removed, the

one with 634 Watt time-average load and the one with 6 Watt.

https://www.scientificamerican.com/article/the-ominous-beauty-of-the-arctic-meltdown/
https://www.scientificamerican.com/article/the-ominous-beauty-of-the-arctic-meltdown/


Table 2
Glossary and equations for Rdate,(net). Metrics denoted with R are sign-inverted: A positive metric means that residents reduced their usage relative to the control group (i.e., the
effect of the feedback was as intended).

Metric Explanation, use, and numerical example Symbol [sample size] Equation

Average treatment vs.
control on specific date
(any date in baseline or
feedback period)

� Monitor daily variation in the relative usage in
the treatment versus the control group

� Not yet baseline-adjusted
� Expl: If for a certain 24 h period the average
apartment load in the treatment group is
380 W versus 400 Watt in the control group,
then Rdate = +5%

Rdate [n = 65; 52 for
the feedback period
and 13 for the
baseline period]

1� 1=36
P36

r¼1
Pr;date

1=89
P89

c¼1
Pc;date

Where:

� Pr½c�;date [Watt] is the time-average load of resi-
dent r [c] in the treatment [control] group dur-
ing the entire day (0–24 h local time) of the
specified date

(1)

Baseline adjustment for
resident r in treatment
group

� Used to isolate the effect of the feedback from
pre-existing differences in electricity usage for
resident r that were present during the baseline
already

� Expl.: If resident r’s time-average load during the
baseline is 150 Watt but the average of this mea-
sure in the control group is 200 Watt, then this
metric for resident r is 0.75

BAr Pr;basel:

1=89
P89

c¼1
Pc;basel:

Where:

� Pr c½ �;basel: as in Eq. (1), however measured over the
entire baseline period

(2)

Baseline adjustment for
entire treatment group

� Used to isolate effects of feedback from pre-
existing differences in usage for the treatment
group that were present during the baseline
already and therefore not a result of the feedback

� In this experiment, the baseline time-average
load of treated residents was 132.88 Watt
whereas it was 132.93 Watt for the control
group. This metric is therefore 0.9996

BAr 1=36
P36

r¼1
Pr;basel:

1=89
P89

c¼1
Pc;basel:

Where:

� Pr c½ �;basel: as in Eq. (2)

(3)

Average treatment vs.
control on specific date
(during feedback
period only)

� Monitor downward trend in the daily difference
between treatment and control group in the 3–
5 days following each feedback (‘‘response-
relapse”)

� Baseline-adjusted
� Expl.: If for a certain 24 h period the average
treated resident’s load is 175 W versus 184 W
in the control group (i.e., 0.9500), and since that
ratio during the baseline period is 0.9996, then
Rdate,net = +4.96% (here, Wdate = 1)

� The weighting (viaWdate) provides the advantage
that the average of all 52 Rdate,net equals the aver-
age of all 36 Rt,all feedbacks, thus facilitating inter-
pretation of results across all metrics, as shown
in Eq. (11)

Rdate,net
[n = 52 for the
feedback period]

Wdate � BAr þRdate � 1
h i

Where:
� BAr as in Eq. (3)
� Wdate is the consumption-weight for that date,
used to adjust for variations in electricity usage
in the control group from one day to the next:
Wdate=Pctrl., date/Pctrl., datewith Pctrl.,date
[Watt] denoting the time-average load per resi-
dent in the control group on the specified date
(0–24 h local time), and Pctrl:;date denoting the
average Pctrl.,date across all 52 days of the feed-
back period

(4)
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The latter apartment was most likely unoccupied, judged from the
small electricity load. Both outlier apartments were in the control
group. This left 89 control apartments (Pc with range 54–508Watt)
and 36 treatment apartments (Pr with range 61–400 Watt), which
were used in all subsequent analyses.
2.8. Reduction metrics

Wedefined fourmetrics, designed to capture different aspects of
the efficacy of feedbacks to prompt reductions in electricity usage.
All fourmetricsmeasure the change in electricity usage in the treat-
ment group as a fraction of the average usage in the control group
during the same time intervals (control group adjustment; see Sec-
tion2.1). Themetrics further correct for anydifferences in electricity
usage between residents in the treatment group and the control
group that pre-existed already during the baseline period (baseline
adjustment; see Section 2.1). The four metrics reflect different
cohorts (from a single resident to an average across all 36 residents)
and different time intervals (a specific day in the feedback period,
any set of 3–5 days that followed a specific feedback round, or all
52 days in the entire feedback period), as follows:

Rdate,(net): Quantifies the average electricity usage reduction
achieved by residents in the treatment group on a specific day of
the 52 day feedback period. This metric was used to track the reduc-
tions achieved by the average resident over time (Fig. 3) aswell as the
average resident’s response-relapse in-between feedbacks (Fig. 4).
6

Rr,f: Quantifies the electricity usage reduction that a specific res-
ident r achieved in response to a specific feedback f. This metric
was used for two purposes: (i) To determine which specific feed-
back types were more effective than others (Fig. 5); and (ii) to
determine whether the efficacy of the feedbacks varied depending
on which resident received them and when (Figs. 6–9).

Rr,all f: Quantifies the electricity usage reduction achieved by a
specific resident r, averaged across the entire feedback period. This
metric was used to determine whether some residents exhibited
more pronounced reductions than others (sometimes referred to
as heterogeneity [5,37]).

Dpr,f: Quantifies the change in electricity usage of a specific
apartment from before to after receiving a specific feedback. This
metric was used to investigate mean reversion in residents’ usage.

Equations for the metrics and numerical examples to illustrate
their interpretation are described in Tables 2–4. We further point
to an important mathematical identity: Whether the feedback
effect is analyzed by day (n = 52 observations), by resident for all
feedbacks combined (n = 36 observations), or by resident and by

feedback (n = 504 observations), the averages of these metrics
are identical to the overall achieved reduction of 11.1%. This iden-
tity is used in order to determine whether there were certain sub-
sets of days, residents, feedback types, or pairings of residents and
feedback types whose usage reductions were higher or lower than
the overall average of 11.1%. Note that the average of the 504 Dpr,f
is 0.0% and that Dpr,f (as opposed to the various R metrics) is not
weighted. Therefore, results in Figs. 8 and 9 (which focus on short



Table 3
Glossary and equations for Rr,f, Rr,all f, and rr,all f.

Metric Explanation, use, and numerical example Symbol [sample
size]

Equation

Effect of treatment of
resident r, in
response to
feedback f

� Investigate how different residents react to specific
feedbacks with different features

� Baseline-adjusted
� Expl.: If resident r consumes 5% below control during
the baseline but 10% above control in the days fol-
lowing, e.g., feedback #12 (and if W12 = 1), this met-
ric is �15% (i.e., increase) for f = 12

� The weighting (via Wf) provides the advantage that
the average across all 504 Rr,f equals the average
across all 36 Rr,all feedbacks, thus facilitating interpreta-
tion of results across all metrics, as shown in Eq. (11)

Rr,f [n = 504, 36
apts. receiving
14 feedbacks
each]

Wf � BAr � Pr;f

1=89
P89

c¼1
Pc;f

� �
Where:

� BAr as in eq (2)
� Pr½c�;f as in Eq. (1), however measured over the 3–
5 days following feedback f (until the next feedback
was sent)

� Wf is the consumption weight for feedback f, used to
adjust for variations in electricity usage in the con-
trol group from one feedback to the next:
Wf=Pctrl., f/Pctrl., fwith Pctrl.,f [Watt] denoting the
time-average electric load per apartment in the con-
trol group during the 3–5 days following feedback f,
and Pctrl:;f denoting the average Pctrl.,f across all 14
feedback rounds

(5)

Effect of treatment on
resident r, averaged
across all 14
feedback rounds

� Investigate heterogeneity amongst residents re. how
they respond to feedbacks overall

� Baseline-adjusted
� Expl.: If resident r consumes 20% above control dur-
ing the baseline period but 5% below control during
the feedback period, this metric is +25%

Rr,all f [n = 36] 1=14
P14

f¼1Rt;fWhere:

� Rr,f as in Eq. (5)

(6)

Effect of treatment on
resident r, averaged
across all 14
feedback rounds

� Investigate heterogeneity amongst residents re. how
they respond to feedbacks overall

� Baseline-adjusted
� Expressed as fraction of a resident’s own consump-
tion (as opposed to the control group’s average),
hence determines each resident’s net change relative
to his/her individual baseline use
Expl.: If resident r consumes 50% below control dur-
ing the baseline period and 60% below control during
the feedback period, this metric is +20%

rt,all f [n = 36]
1� Pr;feedb:

1=89
P89

c¼1
Pc;feedb:

=BAt

� �
Where:

� Pr c½ �;feedb: as in in Eq. (1), however measured over the
entire feedback period
BAr as in Eq. (2)

(7)

Table 4
Glossary and equations for pr,f, p*r,f, and Dpr,f.

Metric Explanation, use, and numerical example Symbol
[sample size]

Equation

Usage of resident r (relative
to control) during days

ahead of feedback f

� Investigate mean reversion behaviour
� Expl.: If resident r consumes 10% above control
during the days ahead of feedback e.g. #12 (i.e.,
between feedback #11 and #12), this metric is
+10% f = 12

pr,f [n = 540, 36
apts.; f = 1. . .15

Pr;f�1

1=80
P89

c¼1
Pc;f�1

Where:

� Pr c½ �;f�1 as in Eq. (5)
� When used in Eq. (10), pr,1 uses the usage P during
the baseline, and pr,f=15 the usage during the
5 days after the last feedback (#14). This yields
14 Dpr,f for each of the 36 residents

(8)

Usage of resident r (relative
to other treated
apartments) during days

ahead of feedback f

� Investigate mean reversion behaviour
� Expl.: If resident r consumes 10% above the aver-
age of all treated apartments during the days
ahead of feedback e.g. #12 (i.e., between feedback
#11 and #12), this metric is +10% f = 12

� p*was chosen differently from p, in order to be the
same as the actual peer comparison metric com-
municated to residents in feedbacks; the correla-
tion between pr,f and p*r,f is 0.97

p*r,f [n = 504, 36
apts. receiving
14 feedbacks
each]

Pr;f�1

1=70
P70

r¼1
Pr;f�1

Where:

� Pr;f�1 as in Eq. (5)
� p*r,f=1 uses the consumption P during the 5 days
prior to feedback #1 (i.e., the period reported on
in feedback #1)

(9)

Change in usage of resident
r (relative to control)

from prior to after
receiving feedback f

� Investigate mean reversion behaviour
� Expl.: If resident r consumes 5% below control
during the days following feedback e.g. #11 but
10% above control in the days following feedback
#12, this metric is +15% change in consumption
for f = 12 (i.e., increase relative to control)

Dpr,f [n = 504,
36 apts.
receiving 14
feedbacks each]

prþ1;f � pr;fWhere:
� Dpr;f as in Eq. (8)

(10)
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term behavioral aspects from one feedback to the next) are not
directly comparable to those in Figs. 3–6 (which focus on net
reductions versus the baseline usage).

The 3 metrics are related as follows, using the same symbols as
in Eqs. (1)–(6):
7

1=36
P36

r¼1Pr;basel:

1=89
P89

c¼1Pc;basel:

� 1=36
P36

r¼1Pr;feedb:

1=89
P89

c¼1Pc;feedb:

¼ 11:1%

¼
P52

date¼1Rdate;net

52
¼

P36
r¼1Rr;allf

36
¼

P14
f¼1

P36
r¼1Rr;f

504
ð11Þ



Fig. 3. Overview of experimental design and determination of electricity reduction (11.1 ± 3.1%) of the 36 residents that received feedbacks. Averages of daily reductions
(Rdate; see Methods) are weighted by the control group’s usage the same day. Blue vertical bars indicate the date on which each of the 14 feedbacks were emailed to residents
in the treatment group (at 10am local time). Black triangles and red circles show the average apartment-level electricity usage each day for the control and the treatment
group, respectively. Error bars for the treatment group (n = 36) show ± 1 SEM. SEM for the control group (n = 89) are smaller but not shown, to preserve clarity of the graph.
Average outside dry-bulb temperature (grey squares, right axis) is shown to infer approximate air conditioning loads (www.ncdc.noaa.gov; New York City Central Park
station). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Response-relapse. Electricity usage reductions on specific days (Rdate,net; 0–
24 h local time; see Methods) averaged across all 36 residents in the treatment
group as a function of the time passed since the most recent feedback (feedbacks
were sent at 10 a.m.). Error bars show ± 1 SEM, accounting for the varying sample
size. The reduction for the ‘‘+3 days” group is statistically significantly lower than
for the 3 earlier days combined (p < 0.05). Grey dashed line shows average Rdate,net
across all 52 days of the feedback period.
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3. Results

3.1. Total achieved reductions

Fig. 3 illustrates the experiment, its duration, and the purpose of
monitoring the electricity usage of a control group. During the
baseline period (days 1 to 13), the apartments’ daily electricity
usage was monitored but no feedbacks were sent yet. On day 14
of the experiment (at 10 am), the first feedback was sent to the
36 participants. This was followed by 13 more feedbacks, always
at 10 am, each containing information about the respective resi-
dent’s electricity usage in the 3–5 days prior to the feedback. The
experiment ended on the 4th day after sending the 14th feedback.
After that, a large portion of the residents vacated their apartments
because of annual lease agreement conditions, thus concluding the
study.

During the baseline period, the average daily electricity usage in
the treatment group (n = 36) was 3.189 kWh per apartment, statis-
tically indistinguishable from that in the control group (3.190
kWh; n = 89). During the 52-day feedback period, usage in both
groups increased, largely driven by air conditioning in response
to rising outside temperatures (also shown in Fig. 3). In order to
separate these exogenous effects from the effect of the feedback,
we analyzed the treatment group’s usage relative to that of the con-
trol group during the same period. We then counted as attributable
to feedback only those changes in the treatment group that devi-
ated from concurrent changes in the control group (see Methods).

During the feedback period, the average daily usage in the treat-
ment group was 4.195 kWh per apartment, 0.524 kWh lower than
that in the control group (4.719 kWh). As seen from the error bars
8

in Fig. 3, variation between residents added substantial noise to the
daily average usage in both groups. But when averaged over all
days, the experiment shows a statistically significant net reduction

http://www.ncdc.noaa.gov


Fig. 5. Efficacy of feedback types. Average electricity usage reductions as % of the control group (Rr,f; see Methods) as function of feedback type (average across all 504 Rr,f is
11.1%). Error bars show ± 1 SEM, accounting for the varying sample size. Results are shown in two tiers: (a) Types that had a (weakly) statistically significant effect on the
observed reductions (p < 0.10); (b) Types whose effect was directionally as expected based on previous literature, however not statistically significant given the sample size.

Fig. 6. ‘‘Boomerang effect” and role of peer comparisons. Average electricity usage reductions as % of the control group (Rr,f; see Methods) as function of (i) whether a peer
comparison was included in the feedback; and (ii) whether feedback was sent to a resident with high [low] baseline consumption (i.e., above [below] average). Negative
reductions denote usage increases. Error bars show ±1 SEM. Differences between ‘‘low” and ‘‘high” baseline consumers were statistically significant (p < 0.01).
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between the baseline and the feedback period (p < 0.01). Interest-
ingly, there is a correlation between Rdate and the control group’s
use Pctrl.,date on the same date (q = 0.62, n = 52, p < 0.01). This cor-
relation can be seen in Fig. 3: On days on which the electricity use
in the control group was higher, e.g., on days with average outside

temperatures above 20 �C, the relative difference between treat-
ment and control group tended to be larger as well. In other words,
9

on those days tenants in the treatment group were able to save a

larger relative portion of their usage. We interpret this as indicat-
ing that the higher electricity usage on those days comprised a lar-
ger portion of discretionary use (e.g., the optional use of air
conditioning in contrast to the non-optional electricity for the
refrigerator), thus enabling a larger reduction relative to the total
usage.



Fig. 7. Electricity usage of single resident over time (example). One particular resident’s usage in the days prior to receiving a particular feedback, as deviation from control
(pr,f; see Methods). Open red circles indicate that the feedback included a peer comparison. Solid grey circles indicate other feedbacks. Changes in usage following a feedback
with peer comparison are highlighted by red lines. As an example, the blue dashed circle illustrates the effect of one particular feedback on the resident. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In summary, the feedbacks prompted residents in the treatment
group to reduce their usage, on average by 11.1 ± 3.1% relative to
what residents in the control group consumed during the same
time period (all error intervals are given as sample average ± 1 stan-
dard error of the mean, SEM [40]). Improvements in reductions
above and beyond this general average are investigated in the fol-
lowing sections, and their possible applications are described in
Discussion.
3.2. Response-relapse

Since feedback features varied randomly between residents,
and since the same resident received different features from one
feedback to the next, we can investigate which features yielded a
more pronounced electricity usage reduction than others. How-
ever, this first raises the question as to whether a resident’s reduc-
tion, if observed, e.g., during the days after receiving the 4th
feedback, is caused mostly by this 4th feedback – or should the
observed behavior be attributed to all 4 feedbacks received so
far? In other words, at how many days (on average) after receiving
a particular feedback did a resident’s usage relapse back to his/her
normal usage (referred to as in-treatment persistence, durability,
or response-relapse [5,54]).

Toquantify this,we analyzed the52daily reductions (Rdate,net; see
Methods for all metrics and respective equations), grouped based on
how many days had passed since the most recent feedback was
received. The average Rdate,net for each of the 5 groups is shown in
Fig. 4, with ‘‘days passed” ranging from zero days (i.e., same day as
the 10 a.m. feedback) to ‘‘+4 days”. Rdate,net was statistically signifi-
cantly larger than zero on the day of receiving the feedback (sent
at 10am) and for another 2 days thereafter. However, on the follow-
ing day (‘‘+3 days”), the feedback effect is no longer statistically dif-
ferent from zero. The result for ‘‘+4 days” is inconclusive because
only two of the 14 feedbacks were followed by 4 days without a
new feedback, resulting in a small sample and thus large SEMs for
the ‘‘+4 days” measurement. SEMs are too large to discern a more
detailed pattern – such as an expected gradually declining usage
10
reduction from one day to the next. Still, we interpret these results
as indicating that the majority of any observed change in usage
can be attributed to the most recent feedback only. This finding is
consistent with a previous study, which also found a ‘‘response-
relapse” from day + 3 after feedbacks [25]. Therefore, in all subse-
quent analyses, we consider the relationship of observed usage
changes on one hand and the features of only the most recent feed-
back on the other, while disregarding the much smaller effect that
previous feedbacks may have contributed.

In summary, the response relapse allows for the analysis of
more complex factors contributing to feedback effectiveness such
as message variety over time and a specific resident’s most recent
energy usage (see Sections 3.3, 3.5 and Discussion).
3.3. Efficacy of different feedback types to prompt reduction

We investigated the 504 observed reductions (Rr,f; seeMethods),
grouped by the type of each feedback. Feedback types were defined
by which feature or combination of features was present in each
feedback. Fig. 5 shows the 17 feedback types and the average Rr,f

prompted by each type. For example, the average reduction for
the 365 feedbacks that included a self-comparison to a resident’s
own previous usage (whether in terms of the energy feature, the
cost feature, or both) was analyzed separately from the average
reduction of the 139 remaining feedbacks that did not have any
of the two possible self-comparison features. Since the presence
or absence of features was determined by a random number gen-
erator, the other feature expressions in the respective groups were
the same on average. For example, about half of the 365 feedbacks
of type ‘‘comparison with own previous: yes” included a graph,
whereas the other half did not, and the same is true for the 139
feedbacks of type ‘‘comparison with own previous: no”. Therefore,
any observed difference in reductions prompted by two groups can
be attributed to the particular type by which they were grouped.

Three message types had (weakly) statistically significant
effects on the electricity usage reduction behavior (Fig. 5a). Feed-
backs that included a self-comparison (i.e., ‘‘. . ., x% higher [lower]



Fig. 8. Mean reversion of electricity usage and amplification by peer comparison. Usage change of resident r from before to after receiving feedback f (Dpr,f) as function of
resident r’s recent usage relative to peers before fedback f (p*r,f; see Methods). Dashed regression lines show the mean reversion (MR) behavior for one example resident (see
legend). Shaded areas between the solid regression lines show the ±1 SEM range of the mean reversion behavior of the average resident . The example resident and the
specific observation highlighted by the blue dashed circle are the same as in Fig. 7. Note that ~ 5% of the 504 observations are outside the plotted range (but were included in
the regression results and shown averages). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Mitigation of boomerang effect in residents with recent electricity usage below peers. Observed average usage increases from one feedback to the next in % of the
control group (Dpr,f; see Methods) as function of (i) whether a peer comparison was included in the feedback; and (ii) whether the feedback’s sentiment was positive or
negative/neutral. Because of the focus on the boomerang effect, only feedbacks to residents are shown whose most recent usage was below that of peers (i.e., 338 of the 504
observations). Error bars show ± 1 SEM.
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than in your previous period”) had a strong average reduction effect
(14%), whereas feedbacks that lacked a self-comparison had a
smaller effect (2%, statistically indistinguishable from zero). Feed-
backs of ‘‘high novelty” prompted ~3 times larger reductions than
low-novelty feedbacks (16% vs. 5%). The ‘‘novelty” type (low or
high) was defined as whether the number of features whose
expression changed vis-a-vis the particular resident’s previous
11
feedback was lower or higher than average (determined for all
feedbacks except the first). Feedbacks that added information at
what time (day or night time; see Methods) a resident had used
the most electricity were less effective than those without this
information (see Discussion).

Other feedback types behaved directionally as expected based
on past literature. However, the respective differences in prompted
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reductions were not large enough to be statistically significant
(Fig. 5b). Including the graph (see example in Fig. 2) tended to be
more effective than not including the graph. Including cost infor-
mation – in our study the retail cost of electricity that residents
had consumed, extrapolated to a full month – was less effective,
possibly because residents in the building were not separately
billed for electricity. With regards to in which equivalent metric
the electricity usage was expressed, ‘‘greenhouse gases” prompted
the lowest electricity usage reductions. ‘‘Number of trees cut
down” was more effective than direct kWh, directionally in agree-
ment with previous studies [25]. Interestingly, referring to climate-
change relevant emissions simply as ‘‘CO2” was more effective than
‘‘greenhouse gases” even though the amounts in kg were the same.
This may indicate that the term ‘‘CO2‘‘ is more immediately associ-
ated by residents as something to avoid than the term ‘‘greenhouse
gases”, but such nuances would have to be re-tested with larger
sample sizes (see Discussion). Short feedbacks (defined here as
those with a below average number of present features) tended
to be more effective in prompting reduction than long feedbacks,
suggesting a benefit for automatically generated feedback mes-
sages to be as concise as possible. The effect of peer-comparison
and message sentiment are investigated in more detail in the fol-
lowing sections. Including a climate-related news story in the feed-
back did not show a statistically significant effect (see Methods).

In summary, of all features and message types, message novelty
showed the most pronounced positive impact on message efficacy,
pointing to strategies for large scale applications of eco-feedback
(see Discussion).
3.4. ‘‘Boomerang effect” and role of peer comparisons

Fig. 6 again shows different feedback types along with their
average Rr,f. However, in contrast to Fig. 5, Fig. 6 further differenti-
ates the feedback groups depending on whether the feedback
recipient was a ‘‘high [low] baseline consumer”. For this analysis,
in line with previous studies [10,37], we defined a ‘‘high [low]
baseline consumer” as a resident having had higher [lower] elec-
tricity usage during the baseline than the average usage in the con-
trol group.

Feedbacks to high baseline consumers prompted a usage reduc-
tion of 54% ± 5.4% (n = 182). In contrast, feedbacks to low baseline
consumers prompted an increase of 13% ± 2.8% (n = 322), a phe-
nomenon referred to in similar studies as a boomerang effect
(see Discussion). There was a statistically significant positive corre-
lation between a resident’s usage during the baseline period prior
to any feedback messaging on the one hand and their reduction
during the feedback period on the other (n = 36, p < 0.01). This
was the case whether the reduction was measured relative to a res-
ident’s own baseline usage (rr,all f, q = 0.66) or relative to the base-
line usage of the control group (Rr,all f q = 0.81). A possible
explanation is that high baseline consumers may have had higher
portions of discretionary usage than low baseline consumers.

We also analyzed the effect of peer comparisons. A feedback
with a peer comparison included the phrase ‘‘. . ., x% less [more] than
similar apartments in your building”, with x replaced with the devi-
ation of the resident’s own recent usage from that of his/her peers’

recent usage ( p�
r;f

��� ���; where peers were all other residents who lived

in similar size apartments in the building and received feedbacks).
For example, when p*r,12 for a specific resident r was 15% during
the days leading up to feedback f = 12, then feedback f = 12 to that
resident, provided a peer comparison was chosen by the random-
ized feature scheme, contained the phrase ‘‘. . ., 15% less than similar
apartments in your building”.

Peer comparisons did not a have significant effect on the aver-
age electricity usage reduction of the study group (11% reduction
12
for feedbacks with peer comparison versus 12% without). However,
peer comparisons did affect the boomerang effect: Only those feed-
backs to low baseline consumers that included a peer comparison
(whether in terms of energy, cost or both) led to a statistically sig-
nificant boomerang effect (15% increase, p < 0.01). The feedbacks to
low baseline consumers without peer comparison led to a much
weaker increase (3%, statistically indistinguishable from zero).
For the high baseline consumers, the effect was reversed, i.e. feed-
backs with peer comparison led to stronger usage reductions (59%)
than those without (35%) (p < 0.10).

In summary, peer comparisons did have an effect on a resident’s
electricity usage, but this effect varied as a function of how much
electricity the resident consumed during the baseline. For the
cohort as a whole, the effect averaged out. This could inform details
of large scale applications of eco-feedback (see Discussion).

3.5. Mean reversion and its amplification by peer comparison

Results in Fig. 6 raise the question whether low baseline con-
sumers behaved inherently differently from high baseline con-
sumers (sometimes referred to as heterogeniety [5,37]), with
respect to their usage reductions and to how peer comparisons
affected this reduction. In our study, the majority of residents in
the treatment group (78%) consumed less than their peers during
at least some portions of the feedback period but more than their
peers during other portions. In other words, a typical resident that

consumed below average during the baseline period still received

at least some feedbacks reading ‘‘. . ., y% more than similar apart-
ments in your building”, and vice versa. To illustrate this, Fig. 7
shows an example of a single resident’s electricity usage during
each of the 14 feedback cycles (relative to the control group’s usage
in the same cycle), and how this resident’s usage changed fre-
quently from above control to below control.

To analyze how peer comparisons affected each resident’s elec-
tricity usage in response to the specific peer comparison they actu-
ally received (‘‘. . ., x% more [or less] than similar apartments in your
building”), we modified the analysis in Fig. 6. Instead of separating
‘‘low” from ‘‘high” consumers according to their baseline usage
(which had been the approach in previous studies [10,37]), we ana-
lyzed each resident r’s change in usage, from immediately before to
after receiving a particular feedback f (Dpr,f), and as a function of
that resident’s usage immediately before feedback f relative to
peers (p*r,f; henceforth ‘‘recent usage”). The created 504 observa-
tions of Dpr,f versus p*r,f (281 for feedbacks with peer comparisons
and 57 without). The observations are shown in Fig. 8, revealing
the following effects: Feedbacks with peer comparison sent to res-
idents who exhibited recent usage above peer average (right quad-
rants) had the strongest impact (reduction of 16.4 ± 6.6%, n = 126;
p < 0.01). Feedbacks with peer comparison sent to residents with
recent usage below peer average (left quadrants) also had a strong
impact (increase of 9.0 ± 1.8%, n = 281; p < 0.01) – however, the
impact was in the opposite direction. Feedbacks without peer com-
parison sent to residents with recent usage above peer average also
prompted a reduction (10.1%), but this was not statistically distin-
guishable from zero.

The observed Dpr,f of each individual resident could be partially
explained by a linear regression describing a mean reversion, a
concept commonly used for asset prices or consumption behavior
in economics [55]:

Dpr;f ¼ MRr;pc � p�
r;f þ er;f ð12Þ

where Dpr,f and p*r,f are as defined above; pc is 1 if feedback f to res-
ident t included a peer comparison feature and 0 otherwise; MRr,pc
is the mean reversion coefficient for resident r (separately for with
vs. without peer comparison; pc = 1 or 0, respectively); and e is a
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not further specified error term that captures other resident behav-
ior beyond the mean reversion. Each of the 2�36 MRr,pc was then
obtained by minimizing least square errors in the respective regres-
sion. A negative MRr,pc means that the particular resident tended to

increase his/her usage when receiving a feedback after a period of

usage below peer average, and vice versa. Residents tended to exhi-
bit a pronounced mean reversion behavior when receiving peer
comparisons: The average MRr,pc=1 across residents was MRr;pc¼1 ¼
�0.41 ± 0.06 (n = 36; red shaded area in Fig. 8). Mean reversion
was weaker (and statistically indistinguishable from zero) when
feedbacks did not include peer comparisons: MRr;pc¼0 ¼ �0.12 ± 0.
12 (n = 34, excluding the 2 residents all of whose feedbacks
included a peer comparison and whose MRr,pc=0 could therefore
not be determined via regression; grey shaded area in Fig. 8). Note
that some degree of mean reversion (i.e., MR < 0) is to be expected
even in the absence of any feedback. This is because any resident’s
electricity usage will remain in line with his/her long term average
usage (as opposed to a pure random walk (MR = 0), which would
deviate increasingly away (above or below) from that average). A
pairwise, two-tailed student t-test showed that the difference
between MRr;pc¼1 and MRr;pc¼0 was statistically significant
(p < 0.05, n = 34).

In summary, not just the group as a whole, but each resident
individually tended to exhibit a more pronounced mean reversion
behavior in response to feedbacks that included a peer comparison
than in response to other feedbacks. Implications for devising the
most effective eco-feedback in large scale applications are
described in Discussion.
3.6. Mitigating the boomerang effect in residents with recent usage
below peers

Previous studies vary regarding whether and how the boomer-
ang effect can be mitigated (see Introduction). Focusing only on res-
idents with recent usage below peers and again tracking their
usage from before to after receiving a particular feedback, a boom-
erang effect is observed in response to feedbacks with peer com-
parisons but not to feedbacks without peer comparison (9%
increase vs. 0%, p < 0.01; Fig. 9). Further analyzing the feedbacks
with peer comparison as a function of the feedbacks’ sentiment,
we find that a positive sentiment lowers the boomerang effect
but does not fully neutralize it (5% increase vs. 11% increase,
p < 0.05).

In summary, simply avoiding a peer comparison for residents
with recent below-peer electricity usage is more effective in keep-
ing usage low than pairing the peer comparison with additional
normative elements (Discussion).
4. Discussion and conclusions

While we used our approach only in a relatively small case
study (504 observations of 36 residents over ~2 months; 89 control
residents), the observed reduction (11.1 ± 3.1% versus control) is
consistent with the average reduction found in previous studies
that employed feedbacks with social comparisons (11.5%) [5],
and higher than the average reduction in other interventions (7%;
with the exception of audits and consulting (14%)) [5]. From a pol-
icy perspective, since 42% of all residents we approached opted to
receive feedback, the energy conservation of the initiative ‘‘offer all
residents in a building feedback” was (11.1 ± 3.1%)�42% = 4.6 ± 1.3%
(residents who declined started with the same average usage as
the treatment group). This conservation is in line with the high
end of the 1.4–3.3% range reported for the O-Power experiments
[11] (which assigned feedback recipients randomly).
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Our approach offers three advantages over previously employed
approaches that use feedback to prompt energy conservation. First,
sending different feedback types to the same resident over time
allows one to statistcially isolate the effect of different message
features (e.g., self-comparison analyzed separately from peer com-
parison), not only on different subgroups of residents but on the
same resident. Second, the approach allows for the analysis of
more complex contributing factors such as message variety over
time and the role of a specific resident’s most recent energy usage.
Third, because feedbacks are generated automatically, the
approach is scalable to large field experiments in which utilities
could use the data from more and more common smart meters
to send feedback messages to tens of thousands of energy users.
This would be akin to the OPower experiments [11,12], but feed-
backs could be sent more frequently than once per month and with
more complex and varying feedback types. Such experiments could
validate previous work by means of larger sample sizes and extend
it to include different demographics and possibly interaction with
message features (e.g., is the effect of peer comparisons a function
of age?). In settings where appliance end-use can be determined in
addition to total electricity use, e.g., via load disaggregation [14],
the underlying reasons for the observed higher portion of electric-
ity savings during cooling days (see section 3.1) could also be
investigated further.

Based on the 504 observations in our study, the two feedback
types prompting the largest average reduction were (i) comparison
of a resident’s most recent usage with their own usage in the pre-
vious feedback (14% reduction); and (ii) feedbacks of high novelty
vis-à-vis the previous feedback (16% reduction). As anecdotal evi-
dence for this, one resident told us: ‘‘I like the feedbacks – I always
try to beat myself.” Another told us ‘‘I stopped paying attention to
the feedbacks whenever I felt they were the same, email after
email”, underlining the benefit of automatic feedback systems that
can produce high message variety. In contrast, comparisons with
peers, on average, did not prompt larger reductions. Instead their
effect was more nuanced, prompting an increase in low consuming
residents (see below). Finally, feedbacks that added information at
what time (day or night time) a resident had used the most elec-
tricity were less effective than those without this information.
We were surprised by this because we had anticipated the oppo-
site, namely that information about when the most usage occurred
may help residents to identify the source (e.g., which appliance)
and then reduce it. Note however that this feature required a def-
inition of what constitutes ‘‘day time” (we chose 9 am–6 pm). We
therefore cannot exclude the possibility that other and/or more
granular time windows may have made this feature more effective.
We therefore interpret our finding regarding ‘‘is use time informa-
tion helpful?” as inconclusive.

Our approach allowed us to evaluate the effect of peer compar-
isons separately from self-comparisons and other message effects.
The mean reversion analysis indicates that the peer comparison
prompts not only different subgroups of residents (e.g., energy-
efficient residents with low baseline usage), but each resident indi-
vidually, to follow the social norm of the average. Such behavior,
observed empiricially in our analysis, was previously postulated
by, e.g., Schultz et al. [10] and interpreted by Knittel et al. [12] as
a type of social comparison process, a framework introduced in
the 1950ies by Festinger [56]. To use an image: Throughout the
experiment, the peer comparisons appear to ‘‘shepherd” each indi-
vidual resident back towards the peers’ average, whenever that
resident consumed below or above that average.

In line with previous work in energy conservation [10,12,36], we
refer to this as a ‘‘boomerang effect”, but only in the narrow sense
that some feedbacks achieved the opposite of their intended effect
[11,57] (namely, a usage increase rather than the intended reduc-
tion). However, this narrow sense differs in connotation from the
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broader social/behavioral context in which the boomerang effect,
originally coined by Hovland et al. [58], has at times been discussed.
BrehmandBrehm’s seminal book [59] on the subject is nuanced, e.g.,
noting the distinction of actual ‘‘boomerang effects as opposed to
reduced positive influence”. Similarly, reviewing respective experi-
mental evidence, Montgomery pointed to the complex overlap in
related research on (anti)conformity on one hand versus attitude
change on the other [60]. These important distinctions notwith-
standing, the boomerang effect has been referred to in the context
of ‘‘defiance” [60], and Brehm and Brehm’s original work [59] has
been summarized to state that ‘‘the theory of psychological reac-
tance – that people act to protect their sense of freedom – is sup-
ported by experiments showing that attempts to restrict a
person’s freedom often produce an anticonformity ‘boomerang
effect’” [61]. In contrast to this connotation, a behavioral interpreta-
tion of our data might be that none of the observed residents
behaved in an anti-conformist manner. Rather, all residents simply
strived to conform to their peers. This interpretation would be con-
sistentwithprevious research,which showed that comparison feed-
backs are more effective when residents are shown the electricity
usage of friends (in the same building), rather than that of other
building residents [54], indicating that the instinct to conform is
stronger with friends than with one’s neighbors.

How should feedbacks be designed in order to achieve the high-
est savings? Our findings suggest three possible strategies: (i)
Devise feedbacks with deliberate variation from one feedback to
the next, to further increase the variation already yielded by the
random feature selection employed in our study; (ii) for residents
with low recent usage, either do not include a peer comparison at
all or (iii) pair the peer comparison with injunctive norms [39],
such as a positive sentiment.
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