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MFRED, 10 second interval real and 
reactive power for groups of 390 US 
apartments of varying size and 
vintage
Christoph J. Meinrenken1,2,6 ✉, Noah Rauschkolb3,6, Sanjmeet Abrol1, Tuhin Chakrabarty1, 
Victor C. Decalf1, Christopher Hidey4, Kathleen McKeown1,4, Ali Mehmani1, Vijay Modi1,3 & 
Patricia J. Culligan1,2,5,6

Building electricity is a major component of global energy use and its environmental impacts. 
Detailed data on residential electricity use have many interrelated research applications, from energy 
conservation to non-intrusive load monitoring, energy storage, integration of renewables, and electric 
vs. fossil-based heating. The dataset presented here, Multifamily Residential Electricity Dataset 
(MFRED), contains the electricity use of 390 apartments, ranging from studios to four-bedroom units. 
All apartments are located in the Northeastern United States (IECC-climate-zone 4 A), but differ in 
their heating/cooling system and construction year (early to late 20th century). To adhere to privacy 
guidelines, data were averaged across 15 apartments each, based on annual electricity use. MFRED 
includes real and reactive power, at 10-second resolution, for January to December 2019 (246 million 
data points). The annual average real power per apartment is 343 W (3.27 W/m2 of floor area), with 
strong variation between seasons and apartment size. Considering its large number of apartments, high 
time resolution, real and reactive power, and 12-month duration, MFRED is currently unique for the 
multifamily-sector.

Background & Summary
Electricity consumption in buildings is a major component of global energy use and its environmental impacts, 
including greenhouse gas (GHG) emissions. In the United States, the residential building sector in 2017 con-
sumed 32% of all electricity1, an amount responsible for 9% of all domestic GHG emissions2. Globally, electricity 
consumption is expected to grow, however with increasing portions generated by renewables sources such as solar 
and wind3.

Understanding residents’ electricity use has many interrelated research applications, including: (i) determin-
ing the potential for energy conservation through resident feedback4–8; (ii) non-intrusive monitoring (NILM) 
of appliance-level loads via disaggregation9–11; (iii) predicting building electricity use12–14, including with 
agent-based models15–17; (iv) leveraging a building’s thermal characteristics to optimize its electricity profile used 
for heating and cooling18,19; (v) switching heating systems from fossil fuels to electricity, e.g., via heat pumps20; (vi) 
assessing the techno-economic feasibility for distributed electric storage to facilitate integration of intermittent 
renewables on the grid21–23, including electric vehicles24,25; (vii) quantifying phantom loads, e.g., from electronics 
in standby mode11; (viii) detecting occupancy patterns26; and (ix) novel market mechanisms and associated tech-
nology solutions to enhance the integration from buildings into smart grids27, e.g., for applications in Transactive 
Energy Networks28.

Here, we present the Multifamily Residential Electricity Dataset, henceforth MFRED (Data Citation 1). 
MFRED features 10-second resolution real and reactive power in 390 apartments, ranging in size from studios 
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to four bedrooms. To place MFRED into context, we note that for US single family homes (detached or attached 
dwellings) a number of publicly available datasets on electricity use already exist. These typically feature either 
a large sample size but at low time resolution (e.g., the RBSA study with 100 homes at the standard 15 minute 
resolution29) or a small sample size at high time resolution (e.g., the REDD study with 10 homes at 1-second or 
higher time resolution10). Outside the US, examples include REFIT in the United Kingdom (electricity data of 
20 houses, including appliance level, at 8-second time resolution over 2 years)30, AMPds in Canada (1-minute 
interval electricity loads of a Canadian house, including 21 separate submeter circuits, over 2 years)31, and 
SustData in Portugal (sub-second interval electricity loads of 6 single family homes and 17 apartments over ~9 
months)32. In contrast, for apartments in US multifamily buildings, which are increasingly common, very few 
datasets have been made public. One example is data of a student housing-style condominium building in Los 
Angeles, California, with hourly resolution of 118 apartments over 8 months33. With these considerations in mind 
– diverse multi-family units, sample size, 10-second time resolution, both real and reactive power, and a full year 
of data – MFRED appears unique.

Methods
Data collection. With authorization from Columbia University’s Institutional Review Board, the electric 
consumption data in MFRED were collected by a standard installation of a Siemens® embedded micro meter-
ing system34 with SEM3 controllers and 9410 data loggers, running in combination with WinPM data collection 
software35 (henceforth Real-Time Metering, RTM). The hardware and software installations were carried out by 
licensed contractors.

The RTM for each apartment (sense, log, communicate) was installed in the buildings' utility rooms, in prox-
imity to the existing utility meters and apartment circuit breakers in each building (rather than inside each apart-
ment), with fifty-amp split-core current transformers on each pole going to an apartment, to measure real-time 
currents. Currents are relayed to a controller (firmware version 2.3.7.AE; 1–2 controller(s) per building), which 
computes real and reactive powers using the voltage probed at the building’s main circuit breaker. Some apart-
ments are wired with only one pole and others with two poles at different phase (“3 Phase Wye” configuration). 
Each controller transmits the power and energy data (see section Data record glossary) to a data logger (firmware 
version 001.003.001), which timestamps the data and reports them to a central server via the building’s Ethernet. 
The data loggers store about 18 hours of data in onboard memory, acting as a buffer in case of temporary Ethernet 
outages. The server runs the data collection software (version 7.1) on a Microsoft® Windows Server 2012R2 virtual 
machine. The data collection software stores the data in a Microsoft SQL database on the server.

Various test routines were carried out to ensure that the data for each apartment were properly communicated 
to the SQL database. For example, during installation of the RTM, this included measuring the amperage of every 
pole with a separate, handheld ampere meter and cross-validating this amperage against the respective data in the 
controllers. Additional test routines, including for meter accuracy, are described in Technical Validation.

Data de-identification and 15/15 rule. All data in MFRED have been fully de-identified and thus carry 
no identifiable information such as names of residents, building addresses, or apartment numbers. To further 
reduce the risk of possible re-identification or privacy breaches, and in consultation with the project management 
at the US Department of Energy and data privacy and re-identification experts (see Acknowledgements), MFRED 
follows the data aggregation standard recommended for publishing utility data in the State of New York, com-
monly referred to as the 15/15 rule36. Briefly, this standard recommends that electricity data not be made public 
at the level of individual apartments but only as aggregates of 15 (or more) apartments each, with the additional 
requirement that no individual apartment comprise more than 15% of the respective aggregate (see section Data 
record/Apartment groups for details).

Data Records
Building types and heating/cooling systems. The 390 apartments in MFRED (dataset available on 
Harvard Dataverse37) are located across over a dozen buildings in the borough of Manhattan, New York, NY, USA 
(IECC climate zone 4A38). All 390 apartments are rented, and the vast majority of residents pay for their electric-
ity through their own contract with the local utility (rather than through their rent).

The buildings were chosen to represent typical Manhattan residential building stock: 79% of the buildings 
in MFRED were constructed prior to 1940, 7% between 1940 and 1980, and 14% post 1980. The average size of 
apartments in MFRED (which ranged from studios to four-bedroom units) is 105 m2 (standard deviation: 48 
m2). For comparison, the entire Manhattan residential and mixed-residential building stock is 86% pre-1940, 6% 
1940–1980, and 8% post-1980, with an average apartment size of 92 m2 (standard deviation: 64 m2)39.

Of the apartments in MFRED, 89% have heating supplied centrally (steam or hot water), but the air condi-
tioning is provided by the residents’ own appliances (typically installed in the windows). This means that, with 
the exception of supplementary personal space heaters or heating blankets, heating in these apartments does 
not contribute to the electricity data reflected in MFRED, whereas air conditioning does. The remaining 11% of 
apartments use various types of packaged terminal air conditioning units (PTAC), with the majority such that 
the bulk of the heating and cooling load is supplied centrally, thus not contributing to an apartment’s own electric 
loads. Consequently, the majority of apartments in MFRED exhibit higher electric power draw during summer 
months, as a function of weather conditions. In contrast, the power draw during winter months depends only 
marginally on weather conditions.

Apartment groups. Following the 15/15 rule36 (above), we organized the 390 apartments into 26 groups of 
15 apartments each (Table 1). These groups are identified by the prefix “AG01” through “AG26” in the column 
headers for each data record in MFRED. To simplify the use of MFRED, the data for each apartment group show 
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the average (not the sum) of each electricity metric at each time step (Table 2), averaged across the 15 apartments 
that belong to each AG.

In order to obtain AGs with similar electricity use in each group, we first sorted the 390 apartments by their 
total electricity consumption in 2019. AG01 comprises the 15 apartments with the lowest 2019 consumption, 
AG02 the next 15 apartments, etc. This approach also ensured that the 15% requirement of the 15/15 rule was not 
violated: For 23 of the 26 AGs, the highest single-apartment portion is 7%, and for the remaining 3 AGs it is 13%.

Data record glossary. Table 2 lists each data record in MFRED along with its technical explanation. The 
acronyms kW, kVAR, and kWh follow standard terminology40. The kWh data record can be used to interpolate 
electricity use during the rare times that some apartment meters were offline (see section Technical validation/
Data gaps). For an illustration of how to interpret the various metrics, see section Seasonality and end-use types.

MFRED file organization. MFRED is organized into five csv files (Table 3). Four of these contain the data 
at 10-second time resolution, one file for each quarter of 2019. The number of rows per csv file was kept below 
1 million, to allow for immediate analysis in standard spreadsheet software. The 5th file shows the data of all 4 
quarters in a single file, but at 15-min time resolution. Note that, for either time resolution, the real and reactive 
powers show instantaneous readings at each time step, not readings time-averaged for the period in-between time 
steps. As such, the 15-min file is simply an excerpt of the other 4 files, provided solely for the convenience of a 
single, smaller file for the entire year.

Benchmarking of annual average consumption. Between 01 January 2019 and 31 December 2019, 
the time-averaged electricity use (real power) per apartment was 343 ± 14 W, or 8.2 ± 0.3 kWh per day (where 
14 W [0.3 kWh] is the standard error of the mean across the 390 apartments, SEM). The time-averaged use 
varies strongly between apartments, from less than 50 W to ~2,500 W. As seen in Fig. 1, the variation is partly 
explained by apartment size. However, even among similarly-sized apartments, differences of a factor 3 or more 
in time-averaged use are common. Note that, based on electricity use patterns, it appears that some of the 390 
apartments were unoccupied for part of the year. Since this is common for rental units in multi-family buildings 

Apt. group
Time-averaged real 
power (σ) [W]

Number of 
bedrooms (σ)

Number of all 
rooms (σ)

Apt. area 
(σ) [m2]

AG01 42 (19) 1.2 (0.7) 3.2 (1.3) 62 (28)

AG02 81 (7) 1.3 (0.5) 3.9 (1.8) 77 (36)

AG03 105 (5) 1.3 (0.6) 3.3 (1.3) 65 (29)

AG04 119 (4) 1.1 (0.3) 3.1 (1.0) 58 (18)

AG05 141 (6) 1.5 (0.6) 4.2 (1.5) 91 (41)

AG06 156 (4) 1.3 (0.5) 3.8 (1.4) 77 (33)

AG07 166 (4) 1.4 (0.6) 4.2 (1.5) 85 (42)

AG08 179 (4) 1.3 (0.6) 3.8 (1.5) 77 (38)

AG09 189 (3) 1.4 (0.6) 3.7 (1.7) 86 (43)

AG10 203 (4) 1.3 (0.6) 3.7 (1.4) 81 (29)

AG11 216 (4) 1.9 (0.8) 4.9 (1.8) 102 (43)

AG12 228 (5) 1.4 (0.5) 4.0 (1.3) 81 (27)

AG13 245 (5) 1.7 (0.7) 4.2 (1.4) 83 (35)

AG14 267 (7) 1.6 (0.6) 4.1 (1.5) 73 (30)

AG15 289 (8) 1.9 (0.6) 5.1 (1.4) 111 (29)

AG16 317 (9) 2.1 (0.7) 5.8 (1.1) 119 (36)

AG17 340 (7) 2.0 (0.8) 5.7 (1.4) 115 (36)

AG18 366 (8) 1.9 (0.6) 5.1 (1.4) 114 (43)

AG19 393 (8) 2.1 (0.5) 5.3 (1.4) 118 (46)

AG20 434 (12) 2.3 (0.6) 5.9 (1.1) 137 (32)

AG21 470 (17) 2.8 (0.6) 6.4 (1.2) 159 (39)

AG22 528 (20) 2.5 (0.8) 6.0 (1.1) 144 (42)

AG23 589 (29) 2.0 (0.7) 5.4 (0.9) 116 (30)

AG24 714 (36) 2.9 (0.7) 5.8 (1.1) 160 (45)

AG25 874 (42) 2.6 (0.8) 6.5 (1.0) 165 (27)

AG26 1255 (425) 2.7 (0.7) 6.5 (0.9) 164 (41)

Average 343 1.8 4.8 105

Table 1. Overview of the 26 apartments groups (“AG”) in MFRED. AGs are sorted from lowest to highest 
annual electricity consumption. Real power, number of rooms, and floor area are specified per average 
apartment (“all rooms” specifies bedrooms, living/dining rooms, kitchens, and bathrooms). Standard deviations 
(σ) of the respective data are shown as well, in order to provide MFRED users with the variability of apartments 
in each AG.
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(e.g., in-between previous and new tenants), the data of these apartments were included in the apartment group 
averages in MFRED.

An average real power of 343 ± 14 W per apartment is consistent with summary statistics from the Residential 
Energy Consumption Survey (RECS) data (latest available data are from 2015)41. According to that survey, apart-
ment units in multifamily buildings of 5 or more units in the Northeastern United States had an average electricity 
use of 340 W (when excluding any electricity used for space or water heating)42.

Considering another benchmark, the average electricity use intensity (i.e., use per floor area) in the apart-
ments in MFRED is close to that observed for single family homes, once adjusted for types of electricity use. In the 
United States Residential Building Stock Assessment (RBSA)29, one of the largest databases for single family homes 
in the United States, the annual average electricity is 1,497 W per home, corresponding to an average electricity 
use of 8.03 W/m2. However, 62% of this use is attributed to electricity used for heating, leaving 3.05 W/m2 for all 
other electricity use. The value of 3.05 W/m2 is close to the average electricity use intensity in MFRED, which is 
3.27 W/m2 (Table 1). The 7% higher electricity use intensity in the apartments in MFRED is likely attributable 
to the following effects: (i) summer cooling loads in climate zone 4 A are higher than in the more temperate cli-
mates in the North Western United States that are reflected in RBSA; (ii) apartments, even if small, will use basic 
appliances such as a refrigerator, thus increasing the average electricity use per m2 of apartments vs. that of single 
family homes. In addition to these differences, apartments vs. single family homes may differ in lighting use per 
m2 or number of residents per m2, both of which would affect electricity use intensity.

Seasonality and end-use types. Figure 2(a) shows the electricity use for different times of the year, with 
each time of year illustrated using a period of 28 days. These periods are in July 2019 (for summer), January 2019 
(for winter), and April 2018 (for the shoulder season). The average real power is highest in July (554 W on week-
days, 583 W on weekends) because the majority of the MFRED apartments use electric window air conditioners 

Column header Explanation, unit, accuracy (where applicable)

DateTimeUTC Time stamp of each data entry, at UTC (coordinated universal time, also known as Greenwich Mean Time), i.e. not 
adjusted for daylight saving; csv files show time in format: yyyy:mm:dd HH:mm:ss (24 h format)

kW* Instantaneous real power [kW] per apartment, observed at DateTimeUTC; accuracy is ± 1%, however the minimum 
detection threshold is 0.003 kW

kVAR* Instantaneous reactive power [kW] per apartment, observed at DateTimeUTC; accuracy is ±1%; inductive loads draw 
positive, whereas capacitive loads draw negative reactive power

kWh* Cumulative electricity consumed [kWh] per apartment, between 01-Jan-2019 5:00:00 UTC (i.e., first time stamp in 
MFRED) and DateTimeUTC

kVA Instantaneous apparent power is not included in MFRED but can be calculated via the power triangle40 as follows: 
kVA = sqrt(kW² + kVAR²)

Phase angle Instantaneous phase angle (PA) is not included in MFRED but can be calculated via the power triangle40 as follows: 
tan(PA) = kVAR/KW

Table 2. Data record glossary for MFRED. *For each of the 26 apartment groups (AG), electricity metrics are 
averaged across the 15 apartments in each group. The group that each column refers to is indicated by the prefix 
“AG01”, “AG02”, …, “AG26” in the column headers. For ease of use, a grand average across all 390 apartments is 
also provided (indicated by the prefix “AGs01To26” in the column headers). Each metric therefore represents 
the kW, kVAR, or kWh of an average apartment (not the sum across apartments). The total real [reactive] power 
on the grid can be calculated by multiplying the given average kW [kVAR] value with the respective number of 
apartments.

Period Resolution Name of csv file
File size 
(compressed)

Number of 
rows in csv 
file**

Avg. fraction of 
apts. reporting per 
time step

2019Q1
15-min n/a n/a 8,636 100%*

10-sec MFRED_Agg_10s_2019Q1.csv 514MB (171MB) 777,240 99.9998%

2019Q2
15-min n/a n/a 8,736 100%*

10-sec MFRED_Agg_10s_2019Q2.csv 530MB (173MB) 786,240 99.9999%

2019Q3
15-min n/a n/a 8,832 99.9512%

10-sec MFRED_Agg_10s_2019Q3.csv 537MB (180MB) 794,880 99.9515%

2019Q4
15-min n/a n/a 8,836 100%*

10-sec MFRED_Agg_10s_2019Q4.csv 550MB (177MB) 795,240 99.9995%

2019Q1-Q4
15-min MFRED_Agg_15m_Q2019Q1-4.csv 24MB (9MB) 35,040 99.9878%

10-sec n/a n/a 3,153,600 99.9877%

Table 3. Names and descriptions of MFRED files (Data Citation 1). The “reporting per time step” metric is 
explained in section Technical validation/Data gaps. * Indicates files with complete coverage (all 390 apartment 
meters reporting at every 15-min time step). ** All files contain one row for every 15 min [10 sec] time step 
during the covered time period.
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rather than centrally supplied cooling. The average real power is lowest in April (285 W on weekdays, 282 W on 
weekends) when there is little need for either air conditioning or supplementary electric heaters. January has a 
slightly higher average real power than April (338 W on weekdays, 339 W on weekends), likely because residents 
use electric lighting for more hours of the day and some use supplementary electric heating. Still, for the majority 
of MFRED apartments heating is supplied centrally, so it does not have a significant impact on apartment-level 
electricity use.

Seasonal differences exist in the diurnal profiles as well. Most notably, the typical load increase in the early 
evening hours (17–20 h) is steeper in January than in April or July. In July, the diurnal profile, while showing 
higher use overall, also shows less variation of use during the day. This is expected in climate zone 4 A for the 
month of July, which features hot and humid weather conditions, prompting substantial use of air conditioning 
throughout the day and night.

A unique feature of MFRED is that it includes both real and reactive power. This allows MFRED users to sep-
arately identify three different types of loads: (i) Inductive loads (such as the electric motors in air conditioners), 
which draw positive reactive power and thus increase the phase angle of the total apartment load; (ii) capacitive 
loads (including some consumer electronics), which draw negative reactive power and thus decrease the phase 
angle; and (iii) resistive loads (such as incandescent light bulbs or space heaters), which draw no reactive power 
and thus reduce the absolute value of the phase angle (i.e., closer to zero)40. As an example of such an analysis, the 
phase angle shown in Fig. 2(b) provides insight into which types of appliances are predominantly used at different 
times of day and how this varies by season: The elevated phase angle in July is consistent with the above inter-
pretation that the additional electricity use in July seen in Fig. 2(a) stems from increased use of air conditioners, 
which have large inductive loads. The negative phase angle observed at night in January and April indicates that 
electronics such as WiFi routers, internet modems, computers, and entertainment devices dominate the average 
apartment’s electricity use at these times. When such electronics are not actively being used (such as a television 
in stand-by mode), they are often referred to as phantom loads11.

Technical Validation
Apartment wiring, data consistency, and dynamic range. As laid out in more detail in Methods, 
all electricity data in MFRED were collected by a standard installation of a vendor-provided RTM. To validate 
that the metering system is running as expected, we carried out several test routines. One test routine, already 
described in Methods, ensured that each of the ~750 current transformers was wired to the correct RTM micro 
meter module. We carried out the following further test routines, with the focus on ensuring that each of the data 
fields in the SQL database imports the correct data from the respective controller.

Internal consistency of data. While only the kW, kVAR, and kWh data records are included in MFRED, the 
controllers record additional metrics for every apartment, including amperage, voltage, apparent power, and 
phase angle. Each controller displays these metrics on a separately accessible interface. The metrics are inter-
related in what is commonly referred to as the power triangle40. For example, the phase angle can be inferred 
mathematically from kVAR and kW (Table 2). We used these mathematical relationships to cross-validate the 
metrics displayed by the controllers directly (e.g., phase angle) with the respective values calculated from the SQL 
database. This gave us very high confidence that all data fields in the SQL database import the correct data from 
each controller.

Dynamic range of metrics. We validated that all metrics fall into their expected ranges, specifically: (i) instan-
taneous real power is positive, ranging from 0 kW to about 15 kW per apartment (for large apartments, at some 
times of day); (ii) reactive power is negative or positive, but typically substantially smaller in absolute value than 
real power (as seen from the phase angles in Fig. 2(b)); (iii) average real power per floor area is consistent with 
benchmarks (see section Data records/Benchmarking); and (iv) voltage per pole is ~120 V.

Fig. 1 Histogram of 12-month time-averaged real power in the 390 apartments (Jan. through Dec. 2019), by 
apartment size (“BR” denotes number of bedrooms). Values in inset box show average ± SEM loads for each size 
class. Lines drawn between markers for each histogram bin are for visual purposes only.
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Accuracy. The manufacturer-rated relative accuracy of the RTM with split-core current transformers is 
±1%34, with lower relative accuracy expected at times of low power draw because the detection threshold is ~3 W 
per pole. We confirmed this accuracy of the RTM by comparing cumulative kWh readings from the RTM against 
those by the utility-provided electric meters used to bill residents. The comparison was carried out for a random 
sample of 78 apartments (20% of all apartments) and across a time period of 2–16 months between September 
2017 and February 2019 (varied by building). We then determined the discrepancy in the real power measure-
ments of the two metering systems as the relative difference of the RTM vs. the utility-meter measurement (using 
the kWh reading at the beginning and the end of the 2–16 months period). As shown in Fig. 3, the majority of 
discrepancies (49 of 78 apartments) are below ±1%, with only 4 of the discrepancies larger than ±5%, and 1 larger 
than ±10%. The average of the absolute value of all 78 discrepancies is 1.42%. As seen in Fig. 3, discrepancies 
higher than about 2% are limited to apartments with small average real powers. For example, the specific apart-
ment with −11% discrepancy draws comparatively low average real power during the observation period (92 W 
average on the utility meter vs. 81 W average on the RTM). The small average indicates that a material portion 
of the total accumulated kWh in this apartment was likely incurred at real powers below the ~3 W detection 
threshold of the RTM, thus leading to the discrepancy. Communication with the superintendent of the respec-
tive building confirmed that the apartment in question was indeed unoccupied for a portion of the observation 
period. The power-weighted average of the absolute value of all 78 discrepancies is 0.92%, and thus consistent 
with the manufacturer’s rating of ±1% for the RTM34. As shown in Fig. 3, the RTM readings are above those of 
the utility-meter for some apartments but below for others. The average discrepancy, when observing the sign, is 
−0.17% (−0.05% when load-weighted). This shows that there is no material systematic error of the RTM when 
compared to the utility-meters.

Data gaps. MFRED has a high degree of data completeness. MFRED comprises ~3.2 million 10-second time 
steps. For the vast majority of these (>99.9%), data were recorded for all 390 apartments and reported in MFRED 
for all 26 apartment groups (AG). In rare cases, meters for some (but never all) of the 390 apartments were offline, 
typically for one or a few 10-second time steps in a row. There is only one such case that lasted longer, namely on 
09-July-2019 from 14:30 to 21:30 UTC. For time steps where any of the 390 meters were offline, the averaging of 
data into AGs was handled as follows: MFRED shows “NULL” for any time step and AG where fewer than the 
respective 15 meters were online (but the data of other AGs at the same time stamp is shown). This approach was 
chosen for three reasons: (i) to adhere to the 15/15 rule (see Methods/Data preprocessing); (ii) to avoid reporting 
“partial” data that would not have reflected all 15 apartments in a specific AG and whose values therefore would 
not have been comparable to those at other times for the same AG; and (iii) to leave possible interpolations of 
missing data to the discretion of MFRED users.

Completeness metrics for each individual csv file of MFRED are listed in Table 3, expressed as the fraction of 
the 390 meters that were online, averaged across all time steps in the specific file. Note that for the 15-min data, 

Fig. 2 (a) Diurnal load profiles by season and weekday vs. weekend (2019). Each line shows the instantaneous 
real power at the full hour, averaged across all weekday/weekend days in the time period and across all 390 
apartments. To ensure consistent representation of weekday vs. weekend, each time period starts on a Monday 
and covers exactly 28 days: 07 Jan.–03 Feb. for winter, 01 Apr.–28 Apr. for the shoulder season, and 08 Jul.–03 
Aug. for summer. (b) Same as (a), but showing the phase angle, calculated from real and reactive powers as per 
Table 2.
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the only period with incomplete data (i.e., some of the 26 AGs show “NULL”) is on 09 July 2019; for all other 
15-min time steps the data are complete.

Real power for those time steps and AGs showing “NULL” in MFRED can be interpolated as follows: 
Whenever meters were offline – and hence did not transmit their data to the SQL database – they nonetheless 
measured the cumulative electricity use (kWh). As a result, the kWh data record in MFRED immediately after a 
period of “NULL” for an AG correctly reflects the cumulative electricity that was consumed by the 15 apartments 
in that AG during the offline period. Therefore, the real power for any period shown as “NULL” in MFRED can 
be estimated via interpolation from the kWh data record immediately before and after the “NULL” period (or via 
more complex approaches preferred by MFRED users).

Usage Notes
MFRED (5 csv files; 2.1GB) is publicly available via Harvard Dataverse37. Column headers and data records are 
explained in Tables 2 and 3. An overview of select possible uses and research applications of MFRED is listed in 
section Background and summary. Analyses presented here focus only on the characterization, validation, and 
benchmarking of the underlying data, in order to provide MFRED users with (i) a readily available overview and 
descriptive statistics of MFRED (Table 1, Figs. 1, 2); (ii) illustrations of seasonal variations and the use of real vs. 
reactive power for different end use types (Fig. 2); and (iii) the accuracy of the metering system (Fig. 3). Note 
that the analysis in Fig. 1 cannot be replicated with MFRED because the electricity use, floor area, and number 
of rooms of individual apartments are withheld in MFRED, in accordance with common data aggregation guide-
lines for utility data, specifically the 15/15 rule36 (see section Data records/Apartment groups). This aggregation 
has to be considered when using the dataset for said research applications, in particular for two of them: First, 
for disaggregation, the aggregate signal comprises on average more appliances (e.g., a refrigerator) and other 
individual end-uses (e.g., a specific light fixture in a specific room) at any given time than would be common for 
a typical, single apartment, thus requiring a successful disaggregation scheme to dissect the aggregate signal into 
more underlying components. To use a simple example, the aggregate signal of each apartment group comprises 
15 separate refrigerators, each with its own on/off pattern. Second, for studying reactive power, the reactive power 
reported in MFRED is the average of the multiple appliances and other end-uses, not only in a single apartment 
but instead of those in 15 apartments. Because the reactive power of each appliance/end-use can range from neg-
ative to positive values, the reported aggregate reactive power can mask a wide range of the reactive powers of the 
increased number of individual underlying components.
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