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‘‘Stay-at-home” orders and other health precautions enacted during the COVID-19 pandemic have led to
substantial changes in residential electricity usage. We conduct a case study to analyze data from 390
apartments in New York City (NYC) to examine the impacts of two key drivers of residential electricity
usage: COVID-19 case-loads and the outdoor temperature. We develop a series of regression models to
predict two characteristics of residential electricity usage on weekdays: The average occupied apart-
ment’s consumption (kWh) over a 9am-5pm window and the hourly peak demand (Watt) over a
12pm-5pmwindow. Via a Monte Carlo simulation, we forecast the two usage characteristics under a pos-
sible scenario in which stay-at-home orders in NYC, or a similar metropolitan region, coincide with warm
summer weather. Under the scenario, the 9am-5pm residential electricity usage on weekdays is pre-
dicted to be 15% – 24% higher than under prior, pre-pandemic conditions. This could lead to substantially
higher utility costs for residents. Additionally, we predict that the residential hourly peak demand
between 12pm and 5pm on weekdays could be 35% – 53% higher than that under pre-pandemic condi-
tions. We conclude that the projected increase in peak demand - which might arise if stay-at-home
guidelines coincided with hot weather conditions - could pose grid management challenges, especially
for residential feeders. We also note that, if there is a longer lasting shift towards work and study-
from-home, utilities will have to rethink load profile considerations. The applications of our predictive
models to managing future smart-grid technology are also highlighted.

� 2021 Published by Elsevier B.V.
1. Introduction

1.1. Background and prior work

Since early 2020, the COVID-19 pandemic has caused a global
catastrophe, impacting almost every aspect of daily life in most
countries [1]. In early 2020, approximately one third of the world’s
population was in ‘‘lockdown” via various types of ‘‘stay-at-home”
orders or similar guidelines [2]. This severe situation saw more
than 80% of workplaces worldwide partially or fully closed, result-
ing in significant economic impacts, including a global recession
that might rival the Great Depression [3].

Generally, how to effectively respond to global disasters is a
crucial issue for local governments and decision-making personnel
[4]. Energy and electricity infrastructures (from energy supply to
demand) have faced disruptions due to the COVID-19 pandemic
and related shelter-in-place orders that are believed to be the most
severe in seven decades [5]. Specifically, the partial or complete
shutdown of many commercial and social activities has substan-
tially reduced energy demand in 2020 [6]. Worldwide, a significant
decrease in energy consumption was observed during the lock-
down period of March-April 2020. Mousazadeh et al. [7] report
an electricity demand decrease as high as 30% in Italy and 12–
20% in France, Germany, Spain, India, and the UK [7]. Other studies
of Europe have shown changes in electricity profiles due to the
pandemic. An investigation by Werth et al. [8] demonstrated that
a significant load drop occurred in most of the 16 countries
investigated in Europe during the period of COVID-19 restrictions
(except for Scandinavia and Switzerland, whose consumption
was relatively stable, probably because of their less prohibitive
restrictions and consistent industrial activities throughout the
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Nomenclature

PTAC Packaged terminal air conditioner
NYISO New York Independent System Operator
NOAA National Ocean and Atmospheric Association
BApril Baseline electricity use in April
Bmonth Baseline electricity use in targeted month
TApril Electricity-use threshold of April
Tmonth Electricity-use threshold of targeted month

y ið Þor iið Þ
use2019 Observed weekday 9am—5pm electricity use in 2019by ið Þor iið Þ
use2019 Modeled weekday 9am—5pm electricity use in 2019

y ið Þor iið Þ
peak2019 Observed weekday 12pm—5pm peak demand in 2019

by ið Þor iið Þ
peak2019 Modeled weekday 12pm—5pm peak demand in 2019

y ið Þor iið Þ
useinc Observed increase of weekday 9am—5pm electricity use

from 2019 to 2020by ið Þor iið Þ
useinc Predicted increase of weekday 9am—5pm electricity use

from 2019 to 2020
y ið Þor iið Þ
peakinc Observed increase of weekday 9am—5pm peak demand

from 2019 to 2020

by ið Þor iið Þ
peakinc Predicted increase of weekday 9am—5pm peak demand

from 2019 to 2020
y ið Þor iið Þ
use2020 Observed weekday 9am—5pm electricity use in 2020by ið Þor iið Þ
use2020 Predicted weekday 9am—5pm electricity use in 2020

y ið Þor iið Þ
peak2020 Observed weekday 9am—5pm peak demand in 2020by ið Þor iið Þ
peak2020 Predicted weekday 9am—5pm peak demand in 2020

WBTthresh Wet-bulb-temperature threshold
WBT9am�5pm Average wet-bulb temperature during 9am—5pm
WBTexp

9am�5pm Exponential-transformed average wet-bulb temper-
ature during 9am—5pm

WBT12pm�5pm Average wet-bulb temperature during 9am—5pm

WBTexp
12pm�5pm Exponential-transformed average wet-bulb tem-

perature during 12pm—5pm
DCCAvg7Day 7-day moving-average of daily confirmed Covid-19

cases
DCClog

Avg7Day Natural logarithm of DCCAvg7Day
R2 Coefficient of determination
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pandemic). Bahmanyar et al. [9] compared the effect of different
containment policies carried out by six European countries (Spain,
Italy, Belgium, the Netherlands, Sweden, and the UK) on their elec-
tricity consumption during the COVID-19 pandemic. They found
that the weekday consumption in most of these countries consid-
erably decreased and that the consumption profiles were close to
pre-pandemic weekend profiles when compared to the same per-
iod in 2019.

National-level energy system disruptions caused by severe haz-
ards or disasters have occurred before. For example, between the
10th of January and 2nd of February 2008, southern China experi-
enced 5 continuous storms, as snow and low-temperature sleet hit
the region. The storms compromised 35,710 power lines and 2007
substations [10]. As another example, in March 2011, an Earth-
quake in East Japan destroyed multiple power stations, resulting
in severe power shortages. In both cases, energy supply rather than
energy demand was curtailed. To deal with reduced supply capac-
ity after the earthquake in Japan, one important policy implemen-
tation sought to reduce summer peak loads in the affected areas by
limiting the use of air-conditioning [11].

Although the overall energy consumption during the pandemic
decreased, the decrease was driven by reduced commercial loads
in large metropolitan areas such as New York City (NYC), London,
or Paris, whereas residential electricity consumption increased as
many residents switched to working or undertaking educational
or other activities from home [12,13]. In addition, the shape of
the residential energy demand profile shifted, with weekday diur-
nal profiles resembling pre-COVID-19 weekend diurnals [12].
Some studies showed electricity peaks disappearing during morn-
ing periods, with these peaks instead shifting to noon. For example,
one study reported an approximate 30% increase in electricity use
around midday in the UK during early April 2020, compared to pre-
pandemic times [14]. In the NYC metropolitan area, also in early
April 2020, a 23% increase during typical working hours (9:00 am
to 5:00 pm) was observed [15].

Significant changes in household day-time use would lead to
new load profiles that might produce new challenges for the con-
sumers and for the grid. In many settings, utilities and govern-
ments have allowed customers to defer payments, leading to
large past-due electricity bills [16]. The bills, especially in summer
months, have also been higher than pre-pandemic bills [17]. Even
2

in heating dominated-geographies such as New York City, one
experiences hot weather, and during those periods the cooling
demand can dominate residential energy consumption. This need
is met through the use of electricity, unlike much of the heating.
Hence one would expect that if residents spend more time at home
between 9am and 5pm on weekdays than they would have other-
wise, the energy use during that period will be higher. Generally,
households contribute major portions to peak electricity demand
during the summer. For example, on hot days, US and European
residential customers comprise a significant portion of electricity
consumption [18,19] and an even larger portion of peak demand
[19,20]. One way to reduce residential summer peak load is to
incentivize behavioral modification, e.g., encouraging residents to
curb on-peak electricity-usage, such as for laundry, by shifting
respective activities to other times of the day [21,22]. For manag-
ing summer peaks during global crises, such as the COVID-19 pan-
demic – or even national-level crises, such as the 2011 Japan
Earthquake – more factors need to be taken into account, including
how hot it gets over the summer months, and whether more resi-
dents are allowed, willing or even encouraged to return to the
usual place of work/school during the aftermath of a crisis [17].
1.2. Focus and objective of present study

A case study is conducted to investigate Covid-19-related
increases in residential electricity usage from 2019 to 2020 in
NYC multi-family residential buildings, using a sample of 390
apartments. The apartments are, in size and vintage, representative
of NYC multi-family building stock, and their electricity consump-
tion is consistent with other multi-family settings in the same cli-
mate region [23]. We focus on two characteristics of the electricity
usage of an average apartment, (i) the electricity consumption
(kWh) on weekdays during the 8 h from 9am to 5pm (in order to
gauge how much electricity use and commensurate financial bur-
den shifts from commercial buildings and schools to the residential
sector); and (ii) the hourly peak demand (Watt) on weekdays dur-
ing the 5 h between 12pm and 5pm (in order to gauge possible
stress on the electricity grid when increased residential peak
demand either coincides with system-wide loads or becomes lar-
ger than the substations and/ or distribution lines in residential
areas were designed to handle). We develop a series of robust pre-
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dictive models and identify two key drivers of residential electric-
ity usage, namely the severity of the pandemic – as measured by
the Covid-19 case load – and the outdoor wet-bulb temperature.
We then use these models to predict electricity usage characteris-
tics for conditions when there is a confluence of high outdoor tem-
peratures during the summer with medium to high portions of
residents working or studying from home. Such conditions might
occur if COVID-19 stay-at-home orders in urban areas like NYC
persist into the summer months – or if there is widespread adop-
tion of a work and study from home lifestyle that is non-pandemic
related but part of a future, ‘‘new normal”. The predictions are used
to understand how much residential summer electricity peaks
might increase financial burdens for residents and the risks of grid
stress or failure.
2. Data and methods

An overview of the electricity consumption dataset and the
approaches to collection, data cleaning and adjustments are intro-
duced in section 2.1. Preliminary analysis of key factors affecting
residential electricity patterns, and the relevant time windows of
the residential consumption are given in section 2.2. The selection
of predictors, model setup and calibration are introduced in section
2.3. The mechanism of the Monte Carlo simulation, employed for
the forecast of a future possible risky scenario (described in section
1.2), is introduced in section 2.4. Finally, the evaluation metric
used in the study is introduced in section 2.5. A flowchart of all
the data processing and methodologies is given by Fig. 1.
2.1. Dataset for apartment-level electricity usage

2.1.1. Overview
We used MFRED, a database of electricity use in over a dozen

residential buildings in NYC, covering 390 apartments ranging in
size from studios to 4-bedroom units [23]. The apartments are rep-
resentative of NYC multi-family building stock in both size and
vintage, and their annual electricity consumption matches that of
comparable residences in the U.S. units in similar climate zones
[23]. The heating in 89% of the apartments is supplied centrally
Fig. 1. Flowchart of all the data processing and methodologies.
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(burning natural gas and distributed within buildings, using steam
or hot water), whereas the air conditioning is supplied by personal
appliances (commonly window-mounted electric air conditioners).
Therefore, heating in most apartments does not contribute to the
apartments’ own electricity usage (except for heating blankets or
space heaters) but air conditioning does. The other 11% of apart-
ments are equipped with different forms of packaged terminal
air conditioners (PTACs), with the majority of the cooling and heat-
ing supplied centrally, such that the PTACs’ electric load does not
materially contribute to an apartment’s electricity usage [23].
Therefore, the vast majority of apartments in our dataset exhibit
higher electricity use during the summer, depending on weather
conditions, especially temperature. In contrast, the electricity
usage during the winter and shoulder seasons depends much less
on the weather.

Electricity usage for every apartment was metered by a Sie-
mens� SEM3 micro-meter system with 50-amp split core current
transformers and ± 1% accuracy [24]. In this study, we used the
incremental electricity consumption (kWh) from one hour to the
next from January 1st to August 31st of both 2019 and 2020. The
2019 and 2020 data were compared to reveal modified diurnal
shapes and increases in both consumption (kWh) and peak
demand (Watt) due to the effects of stay-at-home conditions dur-
ing the pandemic in 2020.
2.1.2. Removing vacant apartments from dataset
Before analyzing the overall daily electricity use of apartments,

we sought to eliminate the impact of uninhabited apartments on
average electricity consumption. Therefore, apartments that were
not occupied for a long period of time (henceforth ‘‘vacant apart-
ments”) were removed from the dataset.

In order to robustly identify vacant apartments, a threshold T
for the 1-month average load of an individual apartment was set
at 1.067 Watts per square meter (W/m2). The value was deter-
mined for the average size of studios and one-bedroom apartments
of our dataset, which usually have a minimum consumption of 70
Watt that consists of a refrigerator (~50 Watt) plus ~ 20 Watt for a
router/Wi-Fi and other electronics in standby mode. It should be
noted that for heating, some apartments have supplementary elec-
trical fans that are centrally equipped and controlled. For cooling,
most apartments are equipped with window air conditioners that
residents usually turn off when they leave their apartments. How-
ever, a small subset of apartments are supplied by central air con-
ditioning controlled by the building. In addition, the electrical
consumption of refrigerators in the vacant apartments can vary
considerably with the changes of climate conditions. Therefore,
the 1.067 W/m2 definition of the threshold does not yet consider
any additional loads caused by weather changes, but instead is
only applicable in the shoulder seasons (and thus, in this study,
was used for April only). To determine the thresholds suitable for
identifying vacant apartments in other months, the April value
was scaled in proportion to the average electricity consumption
of all 390 apartments in the respective month, as follows:

Tmonth ¼ TApril � Bmonth

BApril
ð1Þ

where TApril is the April threshold (1.067 W/m2), Tmonth is the thresh-
old of any month, and BApril and Bmonth are the baseline consump-
tions, defined as the time-averaged apartment electricity load
during April and the targeted month, respectively.

By the defined threshold, the numbers of identified temporarily
vacant apartments from Jan. to Aug. in 2019 and 2020 are com-
puted and shown separately in Fig. 2. One can easily observe that
an increase in the number occurs after February 2020, probably
due to the outbreak of the pandemic in NYC, which prompted some



Fig. 2. Numbers of identified vacant apartments of each month from Jan to Aug in
2019 and 2020.

L. Li, C.J. Meinrenken, V. Modi et al. Energy & Buildings 251 (2021) 111330
residents to move out of their apartments temporarily. In this
study, to maximize consistency between the 2019 and 2020 data-
sets (i.e., same apartments in both years), an apartment was
removed from both datasets whether it was deemed vacant in
2019, in 2020, or both. Based on this approach, 84 vacant apart-
ments were removed from the 2019 and 2020 data, leaving 306
apartments for all subsequent analyses.
2.1.3. Electricity consumption baseline adjustment for 2020 data
Electricity consumption in the 306 apartments might have

changed from 2019 to 2020 for reasons other than the pandemic.
This effect was accounted for via a baseline adjustment. Since the
residents’ work and study patterns started changing in NYC only
from March 2020 onwards, the electricity data from Jan. 1 – Feb.
29, 2020 was not yet impacted by the pandemic. Therefore, this
period was chosen as a benchmark to reveal any difference in
electricity-use baselines between 2019 and 2020. The average
usage in Jan. – Feb. 2020 was 2.0% lower than during Jan – Feb.
2019. One possible reason could be the adoption of more energy-
efficient devices such as LED light bulbs or electronics with lower
stand-by power consumption [25]. In order to further confirm that
the difference of the electricity-use baseline between 2019 and
2020 is not due to weather conditions instead, especially to the
temperature which is the key factor impacting electricity demand
[29], we investigated the average monthly electricity consumption
and the average daily wet-bulb temperature (discussed in section
2.3.1) in Jan. and Feb. of 2018, 2019 and 2020. These are shown
in Table 1 for each year. One can observe that although the average
temperature in Jan. – Feb. of 2019 is 0.2 �C and 2.4 �C lower than
the respective ones in 2018 and 2020, it is the monthly electricity
consumption in Jan. – Feb. of 2018 that is the highest (2.2% larger
than the one in 2019). This indicates that the weather condition is
probably not the key factor leading to the decrease of the
electricity-consumption baseline from Jan. and Feb. 2019 to Jan.
Table 1
Monthly electricity consumption (average per apartment) and average daily wet-bulb tem

January

Years Monthly electricity consumption (kWh) Average daily temperature (oC)

2018 260.91 �2.1
2019 254.30 �2.3
2020 249.65 0.1

4

and Feb. 2020. Therefore, to isolate the difference in electricity
use as a result of the pandemic from concurrent efficiency mea-
sures, the hour-to-hour electricity consumption data for 2020
(see above) was increased by 2.0%. All subsequent analyses, results,
and figures reflect the 2020 data after this adjustment.
2.2. Choice of relevant factors and time-windows of interest

2.2.1. Preliminary analysis of factors driving residential electricity
usage patterns

In order to analyze in what time-windows the residential elec-
tricity usage has changed most significantly due to the pandemic in
2020, an electricity-diurnal analysis was carried out. For brevity,
we henceforth refer to the times before March 21st 2020 as the
‘‘pre-stay-at-home” period, and the times after that as the ‘‘stay-
at-home” period.

First, it can be noted from Fig. 3 (a) that there are shifts in
demand during the morning hours on weekdays, as previously
described by Meinrenken et al. [15]: Pre-stay-at-home, the early-
morning load ramp-up started at about 6.00am and peaked at
8.30am, followed by a decline, with no second ramp-up until the
early evening. In contrast, stay-at-home usage exhibited a
smoother ramp-up that started between 6.00am and 6.30am,
reached the height of the pre-stay-at-home morning demand peak
only at 9am, and then continued to increase through the morning
and early afternoon [15].

Regarding electricity use, Fig. 3 (a) shows that, overall, 2020
weekday electricity usage of apartments (24 h) shows a more sig-
nificant increase (7% increase) versus 2019 use than on weekends
(4% increase). These increases became more pronounced once
advancing into warmer weather in July, where the increase in
24 h weekday-use above 2019 reached 13%, probably due to higher
loads from air-conditioners (Fig. 3 (b)).

Studies for commercial buildings in the U.S. have shown that
their principal electricity use is mostly concentrated in the work-
time period (usually 9am – 5 pm) on weekdays [26]. Focusing on
the same time window in the residential sector, when many resi-
dents would usually be at work/school or otherwise outside of
their homes, the stay-at-home usage increases are even larger than
over the 24 h period: Comparing 2020 to 2019 usage during 9am to
5 pm, one can see a 22% increase in average electricity use in early
April and an even larger increase of 27% in early July.

Fig. 4 shows the overall trends in the 24-hour-electricity-use
and 8-hour-electricity-use (9am—5pm) as percentage increases
from 2019 to 2020, over the same period of Jan 1st – Aug
31st. Percentage increases in the hourly peak demand on week-
days between 12 pm and 5 pm are also shown (see rationale in
section 2.2.3). It can be observed that the three characteristics,
especially the hourly peak demand between 12 pm and 5 pm
and the 8-hour electricity use, are correlated with two metrics,
i.e., the outdoor wet-bulb temperature and the number of new
confirmed Covid-19 cases in every month: During the stay-at-
home period, the pandemic led to significant increases in resi-
dential electricity use, even when temperatures had not yet
reached levels where air conditioning was required. These
increases were therefore most likely due to an increased use of
perature in Jan. and Feb. of 2018, 2019, and 2020.

February

Monthly electricity consumption (kWh) Average daily temperature (oC)

231.21 3.5
226.92 �0.1
221.89 2.5



Fig. 3. (a) Stay-at-home and pre-stay-at-home electricity diurnals of one week in early April of 2019 and 2020, respectively. (b) Same for one week in July. Diurnals are
shown separately for weekdays and weekends. Data tables provide the comparisons of electricity usage in 2020 versus 2019, namely: 24-hour electricity-use increase of
weekdays and weekend, and 8-hour electricity-use increase (9am-5pm) of weekdays and weekend.

Fig. 4. (a) Increases in 24-hour-use, 8-hour-use, and 5-hour peak-demand (weekdays) between 2019 and 2020, by month. (b) Total monthly new confirmed Covid-19 cases
in NYC in 2020, by month. (c) Average monthly wet-bulb temperature in 2019 and 2020, by month. The three areas in (a), denoted by blue, red, and yellow shading,
represent the three degrees of government shelter-in-place orders in 2020 due to the varying pandemic severity in NYC. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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lights, appliances for food preparation, computers, and entertain-
ment systems because more residents worked/studied from
home. Once entering Phase 1 of the gradual reopening, new daily
5

Covid-19 cases in NYC were declining, and the portion of resi-
dents remaining in their homes during the day was likely declin-
ing as well [27]. However, due to the higher outdoor
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temperatures now requiring increased cooling loads, the 8-hour
electricity usage exhibits a notable further increase during the
summertime in 2020.

In summary, both the outdoor temperature and Covid-19 cases
should be considered when explaining differences in electricity
usage between 2019 and 2020.

2.2.2. Context of system-wide electricity use
According to the average weekday load profiles in NYC (NYISO

[28], Fig. 5), system-wide demand in Jan. – Aug., 2019 and 2020
(i.e., residential, commercial, and industrial electricity usage com-
bined) ramped up during the morning hours and reached 98% or
higher of daily peak levels from 12 pm onwards until well into
the afternoon. System-wide demand went down from 2019 to
2020, with the largest reduction (about 700 megawatts or 10%)
around 4 pm to 5 pm. In contrast, based on our NYC residential
electricity dataset (Fig. 3), there were substantial increases in
hourly demand peaks from 2019 to 2020 during the time window
of 12 pm – 5 pm (up to 50% on some days; not shown) as well as
substantial increases in residential electricity consumption from
2019 to 2020 during the time window of 9am – 5 pm (up to 55%).

2.2.3. Choice and rationale for time windows and electricity metrics of
interest

Based on the observations in sections 2.2.1 and 2.2.2, for the
remaining analyses, we therefore focus on the following two char-
acteristics of electricity usage, which capture different time win-
dows and different electricity metrics:

(i) Average per-apartment electricity consumption (kWh)
cumulatively from 9am to 5 pm on a given weekday, for brevity
also referred to in this study as ‘‘8-hour-electricity-use”. This was
analyzed in order to gauge the electricity usage (and associated
costs) that can shift from the commercial sector (such as office
buildings and schools) to the residential sector because of ‘‘stay-
at-home” and/or ‘‘work-from-home” guidelines.

(ii) Hourly peak demand (Watt) for an average apartment at any
time between 12 pm and 5 pm on a given weekday, defined at 1-
hour resolution, for brevity also referred to in this study as ‘‘5-ho
ur-peak-demand”. ‘‘Peak demand” was defined as the highest of
the hourly average load (in Watts) between any two consecutive
full hours in the time window of interest. To establish these, first,
the hourly average Watts between 12 and 1 pm, 1–2 pm, . . . and 4–
5 pm on a given day were determined, and then the ‘‘5-hour-peak-
Fig. 5. Weekday average hourly load (residential, commercial, and industrial; MW)
in NYC from Jan. to Aug. in 2019 and 2020 (NYISO).

6

demand” on that day was taken to be the maximum of these five,
hourly values. The peak demand was analyzed in order to gauge
potential stress on local or region-wide grid infrastructure when
increased residential demand coincides with (still) high system-
wide demand. The peak demand during full or partial stay-at-
home orders was further compared to the highest ever hourly res-
idential peak in a no-pandemic condition in 2019. This peak typi-
cally occurs in the evenings of hot/humid days. The comparison
was carried out in order to gauge whether the increased afternoon
peak demand during widespread stay-at-home conditions could
lead to black-outs or brown-outs of the local substations and dis-
tribution system in predominantly residential regions of a city (be-
cause the demand is larger than what the system was designed to
handle), even if other areas of the city with higher commercial and
industrial usage experience reduced system-wide electricity use
(see Conclusions and Discussion).

2.3. Model components and calibration

2.3.1. Model inputs and outputs
2.3.1.1. Wet-bulb temperature. Previous work on electricity usage
forecasting for households has shown that outside temperature is
the strongest factor driving electricity demand in the residential
sector, if the cooling systems of the targeted households, as in
our case study, comprise electrical air conditioners [29]. Regarding
the specific type of temperature, previous work has shown that
wet-bulb temperature is a better predictor for residential cooling
loads than dry-bulb temperature, as the former captures both tem-
perature and humidity [30]. Therefore, we chose wet-bulb temper-
ature (henceforth WBT) as our first independent factor for
modeling. WBT was available at approximately hourly time resolu-
tion, typically with a data point available near the full hour
(National Oceanic and Atmospheric Association (NOAA); Central
Part weather station in NYC) [31]). For simplicity, the temperature
reported at e.g., 8.51am was subsequently used as the temperature
for 9.00am, 2.51 pm for 3.00 pm, and so forth. In the models, as the
predictor for the 9am-5 pm electricity use, the 9am-5 pm average
WBT (WBT9am-5pm) was then determined by averaging the 9 WBTs
from 9am to 5 pm. Similarly, the predictor for the 12 pm-5 pm
peak demand is the average of the 6 temperatures from 12 pm to
5 pm (WBT12pm-5pm).

2.3.1.2. Daily new confirmed Covid-19 cases. Next, a 7-day moving-
average of daily new confirmed Covid-19 cases (henceforth
DCCAvg7Day) in NYC was used as another independent factor in the
regression models. Specifically, for any day for which the electricity
consumption was modeled, the factor was the average of the
DCCAvg7Day of the previous 7 days, which was obtained from the
NYC Department of Health and Mental Hygiene [32]. The factor,
which in NYC was commonly reported in the news, can be inter-
preted as a proxy for the severity of the pandemic, and the daily
confirmed cases are important references for government agencies
to propose specific policies including banning of mass gatherings,
quarantines, and population-wide stay-at-home orders [33]. A
study conducted by Gao et al. [34] showed that due to the imple-
mentation of the stay-at-home orders after the pandemic,
increased rates of the Covid-19 confirmed cases and time spent
at home show a positive correlation of 0.526 (95% confidence inter-
val: 0.293–0.700). Their data was collected from 45 million anony-
mous mobile phones in 50 states of the U.S. between Mar. 11 and
Apr. 10, 2020. In addition, a study by Sen et al. [35] assessed the
association between the statewide ‘‘stay-at-home” orders and
Covid-19 hospitalizations in four states in the U.S. Their results
show that the cumulative hospitalizations up to and including
the median effective date of a stay-at-home order closely fit an
exponential function (0.97–0.99 R2) better than a linear one
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(0.69–0.80 R2). Shelter-in-place restrictions can result in increased
electricity demand at home, due to more cooking (e.g., microwave)
working (computers, lights, air-conditioners, etc.), and entertain-
ment (electronics) by residents. Therefore, the daily confirmed
cases can be another key factor impacting electricity demand, as
it reflects the probability that residents stay at home vs. not
(whether out of caution, in response to city-wide guidelines of
the ‘‘stay-at-home” orders, or both).

2.3.1.3. Separation of parameter space into high and low tempera-
tures. As described in Section 2.1.1, most apartments in our dataset
consume more electricity in the summer when air conditioners are
used, whereas consumption during winter depends only margin-
ally on the weather. Therefore, we developed separate models for
times when cooling is not required and times when cooling is
required. The threshold temperature (dry-bulb) for requiring cool-
ing versus not in NYC is commonly 18.3 �C [36,37]. Since WBT was
chosen as the predictor in this study, we converted 18.3 �Cdry-bulb

into its approximate respective WBT by using the average
of all hourly NOAA-reported WBTs measured at times of
18.25–18.34 �Cdry-bulb in 2019 and 2020. The thus obtained WBT
threshold (WBTthresh) is 13.8 �C.

2.3.2. Model structure and rationale
Separate models were devised to forecast the 8-hour-

electricity-use on one hand and the 5-hour-peak-demand on the
other. Each model was further differentiated into 2 sub-models,
one for cooling times and one for non-cooling times, thus yielding
a total of 4 separate models.

Inputs, logical flow, and outputs of the 4 models are summa-
rized in Fig. 6. Each of the four models follows two basic steps to
predict the electricity usage characteristics during stay-at-home
behavior. In step one, the electricity usage data observed in 2019
is used in order to model the two usage characteristics as a func-
tion of WBT only. This reflects the usage characteristics under a
non stay-at-home scenario. In step two, the difference between
the observed 2020 usage (observed at a certain WBT and
DCCAvg7Day) and the non-pandemic 2019 usage (modeled for the
Fig. 6. Flowcharts of the forecast models for weekday 8-hour-electricity-use (in kWh per
occupied apartment; right).

7

same WBT) is used to devise models to predict the stay-at-home-
related increase in electricity usage. As will be shown in sections
2.3.2 and 2.3.3, this increase is a function of DCCAvg7Day, and, for
outdoor temperatures where cooling is required, also a function
of the average WBT observed in the daily particular time window
for which the electricity usage is predicted. The reason for the sep-
arate step 1, i.e., for modeling the 2019 data separately rather than
simply using the observed 2019 data, is to maximize the use of the
available 2020 data to calibrate the models: By using a model for
the 2019 electricity usage characteristics, each observed 2020
usage can be compared to the usage that would be expected with-
out stay-at-home conditions but at the exact same average WBT in
the respective time window (9am-5 pm or 12 pm-5 pm).

It should be noted that in this study, instead of more complex
methods such as neural networks, we opted for traditional multi-
factor regression models in order to retain transparency of the
mathematical relationships. This approach was chosen in particu-
lar to retain robustness of the models when predicting electricity
usage for parameter ranges of DCCAvg7Day and WBT that had not
been observed (see section 2.4). Similar to e.g., the method imple-
mented by Bianco et al. [38], the optimization of coefficients was
carried out stepwise: The coefficients for modeling 2019 data
and for the single factor transformations were optimized first,
and these coefficients were then held constant in the subsequent
2-factor linear regressions. The step-wise optimization of coeffi-
cients minimizes the degrees of freedom in each modeling step
and thus further reduces any risk of overfitting. Coefficients in all
regression models were chosen to minimize the mean squared
errors between the observed and the modeled electricity data.

In keeping with this 2-step process, the sections below are
therefore organized as follows: Section 2.3.3 illustrates the broad
relationship between WBT and the 8-hour-electricity-use, includ-
ing the impact of stay-at-home conditions from 2019 to 2020. Sec-
tion 2.3.4 illustrates the same for the 5-hour-peak-demand. Based
on these impacts, sections 2.3.5 and 2.3.6 then illustrate the details
of the modeling process for the 8-hour-electricity-use and 5-hour-
peak-demand, by employing single-factor analysis, log and expo-
nential factor transformations, and multi-factor linear regression.
average, occupied apartment; left) and 5-hour-peak-demand (in Watt per average,
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Section 2.4 provides the equations for combining these models to
forecast the 8-hour-electricity-use and 5-hour-peak-demand
under a potential future scenario of widespread stay-at-home con-
ditions that also coincide with warm weather. Section 5 provides
the evaluation metric for the models’ prediction accuracy.

2.3.3. Modeling 2019 usage: 9am-5 pm (8-hour) weekday electricity-
use

As seen in Fig. 7 (a), when cooling is not required, WBT only
marginally impacts the 8-hour-electricity-use, and a straight line
with a negative slope thus provides a robust fit. This simple linear
regression follows the approach by Shin et al. [38], except that a
downward slope was added to account for the observed, weak
downward trend, which is expected because of the occasional
use of personal electric space heaters or heating blankets at colder
temperatures:

by ið Þ
use2019 ¼ m1WBT9am�5pm þm2 ð2Þ

where by ið Þ
use2019 is the modeled 8-hour-electricity-use in 2019, and

WBT9am-5pm is as above. m1 and m2 are the two coefficients of the
linear regression. The superscript ‘‘(i)” represents the case where
cooling is not required (i.e., WBT9am-5pm smaller than WBTthresh
(13.8 �C)).

For times when cooling is required, as shown in Fig. 7 (b), one
choice is to model the 8-hour-electricity-use variation with WBT
Fig. 7. Weekday 8-hour apartment electricity usage vs. WBT. (a) Observed 2019 data
Same as (a), but for WBT9am-5pm larger than WBTthresh (i.e., with cooling. (c) Observed 202
WBT9am-5pm larger than WBTthresh (i.e., with cooling). The R2 in (a) and (b) represent the m
not however the prediction accuracy of the final model. Black arrows in (c) and (d) repre
markers) and the usages modeled for 2019 at same WBT (blue lines). (For interpretation
version of this article.)

8

to be approximately exponential. There are other choices as well,
for example one could model the behavior between 13.8 �C and
~17 �C as nearly constant followed by a linear increase as WBT
increases. We chose an exponential relationship as it provided
the best R2 (compared to using constants and linear regressions,
or their combinations) in the temperature range of interest. As
introduced in the dataset overview (Section 2.1.1), heating in most
apartments does not contribute to the apartments’ electricity
usage (except for heating blankets or space heaters) but air condi-
tioning does. Therefore, the electricity consumption does not vary
significantly with the increase of temperature at a lower tempera-
ture range (no cooling required) and, for higher temperatures,
implementing an exponential relationship provided a good fit. This
fit is defined as follows:

by iið Þ
use2019 ¼ m3em4WBT9am�5pm ð3Þ

where by iið Þ
use2019 is the predicted 8-hour-electricity-use in 2019, and

WBT9am�5pm is as above. m3 and m4 are the two coefficients of the
exponential regression. The superscript ‘‘(ii)” represents the case
where cooling is required (i.e., WBT9am-5pm larger than WBTthresh
(13.8 �C)).

As seen in Fig. 7 (c) and (d), the 8-hour-electricity-use in 2020,
both for when cooling is required and not, shows considerable
increases vs. 2019, consistent with the diurnal analysis discussed
in Section 2.2. Specifically, we can find from Fig. 7 (c) that during
vs. WBT9am-5pm when WBT9am-5pm smaller than WBTthresh (i.e., without cooling). (b)
0 data (WBT9am-5pm smaller than WBTthresh, i.e., no cooling). (d) Same as (c), but for
odeling performance of the intermediate regressions in Eq. (2) and (3), respectively,
sent two examples of the usage increase between the usages observed in 2020 (red
of the references to colour in this figure legend, the reader is referred to the web
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low-temperature periods (below ~ 5 �C), there is no material differ-
ence between the 8-hour-electricity-use of the two years. That is
consistent with the fact that, in NYC, the COVID-19 pandemic,
and thus the associated stay-at-home conditions, only started at
the end of winter. In contrast, in warmer weather (above ~ 5 �C),
there is a difference in the 8-hour-electricity-use of the two years
(indicated by black arrows), and this difference rises exponentially
for temperatures aboveWBTthresh (13.8 �C). This indicates that, dur-
ing the summertime, stay-at-home conditions led to more pro-
nounced increases in the 8-hour-electricity-use in 2020 due to
the dominant impact of the higher temperature, even though
DCCAvg7Day had decreased at that time and, following gradual relax-
ing of stay-at-home guidelines, presumably fewer residents were
‘‘sheltering-in-place”. Again, this is consistent with the result
shown in Section 2.2 (Fig. 4).

2.3.4. Modeling 2019 usage: 12 pm-5 pm (5-hour) weekday demand
peaks

A linear regression and an exponential regression, both based
on WBT, were set up to model the 5-hour-peak-demand in 2019
(Fig. 8), as follows:

by ið Þ
peak2019 ¼ k1WBT12pm�5pm þ k2 ð4Þ
by iið Þ
peak2019 ¼ k3ek4WBT12pm�5pm ð5Þ

where WBT12pm�5pm is as defined above. by ið Þor iið Þ
peak2019 is the modeled 5-

hour-peak-demand. k1, k2, k3 and k4 are the coefficients of the
regression. Again, the superscripts ‘‘(i)” and ‘‘(ii)” denote the two
cases of no cooling required and cooling required, respectively. As
seen in Fig. 8(d), the 5-hour-peak-demand is even more sensitive
Fig. 8. Weekday 5-hour apartment peak demand vs.WBT. (a) Observed 2019 data vs.W
as (a), but for WBT12pm-5pm larger than WBTthresh (i.e., with cooling). (c) Observed 2020
WBT12pm-5pm larger than WBTthresh (i.e., with cooling). The R2 in (a) and (b) represent the m
not however the prediction accuracy of the final model. Black arrows in (c) and (d) repres
the usage modeled for 2019 at same WBT (blue lines). (For interpretation of the referen
article.)

9

to temperature fluctuations in warmer weather than the 8-hour-
electricity-use (Fig. 7(d)), with implications for grid stability (see
Conclusions and Discussion).

2.3.5. Predicting increases in usage: 9am-5 pm (8-hour) weekday
electricity-use

Next, we carried out a series of single-factor analyses to identify
a robust model for the increase in weekday 8-hour-electricity-use
(9am – 5 pm) from 2019 to 2020 as a function of WBT9am-5pm and
DCCAvg7Day. As motivated in section 2.3.2, the increase was defined
as follows:

y ið Þ
useinc ¼ y ið Þ

use2020 � by ið Þ
use2019

y iið Þ
useinc ¼ y iið Þ

use2020 � by iið Þ
use2019 ð6Þ

where y ið Þor iið Þ
useinc denotes the increases of the 8-hour-electricity-use

from 2019 to 2020, each determined as the difference between

the observed use in 2020 y ið Þor iið Þ
use2020 and the modeled use in 2019by ið Þor iið Þ

use2019 (modeled for WBT9am-5pm observed in 2020; see section
2.3.2). The superscripts ‘‘(i)” or ‘‘(ii)” denote the two cases of no
cooling required (N = 107 observations) or cooling required
(N = 67 observations), respectively.

2.3.5.1. Use-increase when cooling is not required. Through the
single-factor analysis shown in Fig. 9 (a), one can find that the
increase in 8-hour-electricity-use is logarithmically impacted by
DCCAvg7Day. As seen in Fig. 8. (b), the increase resembles a step func-
tion as WBT rises. However, the step is most likely not principally
caused by the WBT change but rather by stay-at-home conditions:
Fig. 7 (c) shows that the average increase that corresponds to lower
BT12pm-5pm whenWBT12pm-5pm smaller thanWBTthresh (i.e., without cooling). (b) Same
data (WBT12pm-5pm smaller than WBTthresh, i.e., no cooling). (d) Same as (c), but for
odeling performance of the intermediate regressions in Eq. (4) and (5), respectively,
ent two examples of the increase between usage observed in 2020 (red markers) and
ces to colour in this figure legend, the reader is referred to the web version of this



Fig. 9. (a) Increase in weekday 8-hour-electricity-use (9 am – 5 pm) vs. DCCAvg7Day in NYC. (b) Same vs. WBT9am–5pm. All data points in (a) and (b) are for times when
cooling is not required. The red line in (a) shows the increase in weekday 8-hour-electricity-use as predicted by the regression in Eq. (7a) and the R2 in (a) represents the
evaluation result of the intermediate regression in Eq. (7a), , not however the prediction accuracy of the final model 1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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WBTs (around �6.7 �C – 4.5 �C) is zero (open blue circles in Fig. 9
(b)). These lower WBTs correspond to the period pre-stay-at-
home (before the pandemic) from January to February 2020. When
the WBT reaches about 5 �C, the increase in 8-hour-electricity-use
is higher (solid blue circles in Fig. 9 (b)), but there are no additional
noticeable trends as a function of further increasing WBT. There-
fore, we set the dependence of the increase in 8-hour-electricity-
use on WBT to zero. For temperatures when cooling was not
required, the final regression model was thus defined as follows:

Model 1:

Model1 :
y
^ ðiÞ
useinc ¼ b1:1 ln DCCAvg7Day þ b1:2

� �
7að Þ

y
^ ið Þ
use2020 ¼ y

^ ið Þ
use2019 þ y

^ ið Þ
useinc 7bð Þ

8<:
where by ið Þ

useinc denotes the predicted increase in the 8-hour-

electricity-use, and by ið Þ
use2020 denotes the predicted 8-hour-

electricity-use in 2020. b1:1and b1:2 are the two coefficients of the
regression. The corresponding statistical metrices and modeling
performance are shown in Table 2 and 6, respectively.

2.3.5.2. Use-increase when cooling is required. We first analyzed the
relationship between the 8-hour-electricity-use-increase and
DCCAvg7Day. As shown in Fig. 10 (a), the data again shows a roughly
logarithmic trend. Therefore, to maximize the forecasting accuracy
of the subsequent regression model, a logarithmic transformation
for the DCCAvg7Day was implemented, as follows:

DCClog
Avg7Day ¼ max a1ln DCCAvg7Day

� �þ a2; 0
� � ð8Þ

where DCCAvg7Day as above and DCClog
Avg7Day denotes its transforma-

tion to be used in the subsequent regression model. a1 and a2 are
the two coefficients. The maximum operator in Eq. (8) sets a zero
floor to avoid negative predicted values for electricity usage.
Table 2
Coefficients for Model 1 (prediction of the 8-hour-electricity-use when cooling is not requir
the number of data points in the regressions.

m1 m2

Results �0.019 (-0.022, �0.016) 2.535 (2.513, 2
P 4.15e-08 2.36e-10
N 107
Used in Eq. (2), (6), (7)

10
As seen in Fig. 10 (a), the employed logarithmic transformation
does not match data observations ideally, for the following reason:
By summer time 2020, DCCAvg7Day in NYC had decreased substan-
tially. This led to the fact that at high-temperatures, when the 8-
hour-electricity-use is largely affected by cooling as displayed by
the data highlighted by the black dashed circle in Fig. 10 (a), the
observations at high temperatures are not actually at times of high
DCCAvg7Day. However, when DCCAvg7Day were higher earlier that year,
as represented by the data points highlighted by the black solid cir-
cle in Fig. 10 (a), temperatures were not yet that hot and the cor-
responding 8-hour-electricity-use thus had not reached its
maximum possible values. This re-confirms our observation in sec-
tion 2.2 that the final regression model for increases in electricity
use during widespread stay-at-home conditions must consider
both DCCAvg7Day and WBT.

As for the relationship between increases in electricity usage
and WBT, Fig. 9 (b) shows an approximately exponential relation-
ship. We therefore devised an exponential transformation for
WBT, as follows:

WBTexp
9am�5pm ¼ b1eb2WBT9am�5pm ð9Þ

where WBT9am�5pm in 2020 is as above, and WBTexp
9am�5pm is its expo-

nential transformation to be used in the subsequent linear regres-
sion. b1 and b2 are the two coefficients. The two transformed

variables DCClog
Avg7Day and WBTexp

9am�5pm were then used as the two
independent variables in a two-factor linear regression model for
predicting the 8-hour-use-increase when cooling is required, as
follows:

Model 2:

Model2 :
ŷ iið Þ
useinc ¼ b2:1 þ b2:2DCC

log
Avg7Day þ b2:3WBTexp

9am�5pm 10að Þ
ŷ iið Þ
use2020 ¼ ŷ iið Þ

use2019 þ ŷ iið Þ
useinc 10bð Þ

(

ed). 95% confidence intervals of the coefficients are reported in parentheses. N denotes

b1:1 b1:2

.557) 0.0641 (0.059, 0.069) 3.828 (1.409, 6.248)
2.21e-4 7.56e-8



Fig. 10. (a) Increase in weekday 8-hour-electricity-use (9am – 5 pm) vs. DCCAvg7Day. (b) Same vs. WBT9am-5 pm. All data points are for times when cooling is required
during Jan – Aug. The data points in the dashed black circle represent the weekdays with relatively high WBT (about 24 �C) but relatively low daily Covid-19 case numbers.
The data points in the solid black circle represent weekdays with relatively low WBT (about 20 �C) but relatively high daily case numbers. The red line in (a) [(b)] shows the
prediction of a single factor model using the transformed DCCAvg7Day [WBT9am-5pm]. The R2 in (a) [(b)] corresponds to the evaluation result of the intermediate single-factor
regression using the transformed DCCAvg7Day [WBT9am-5pm], not however the prediction accuracy of the final model 2. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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where by iið Þ
useinc denotes the predicted increase in 8-hour-

electricity-use, and by iið Þ
use2020 denotes the predicted 8-hour-

electricity-use in 2020. DCClog
Avg7Day and WBTexp

9am�5pm are as defined
above, and b2:1, b2:2, and b2:3 are the three coefficients of the 2-
factor linear regression model, whose statistical metrics and mod-
eling performance are shown in Table 3 and 6, respectively.

2.3.6. Predicting increases in usage: 12 pm-5 pm (5-hour) weekday
peak demands

Next, we used similar methods to analyze and forecast the
weekday 5-hour-peak-demand (12 pm – 5 pm) as a function of
the two factors (WBT12pm-5pm and DCCAvg7Day). The increase was
defined as follows:

y ið Þ
peakinc ¼ y ið Þ

peak2020 � by ið Þ
peak2019

y iið Þ
peakinc ¼ y iið Þ

peak2020 � by iið Þ
peak2019 ð11Þ

where y ið Þor iið Þ
peakinc denotes the increases of the 5-hour-peak-demand

from 2019 to 2020, each determined as the difference between

the observed peak demand in 2020 y ið Þor iið Þ
peak2020 and the modeled peak

demand in 2019 by ið Þor iið Þ
peak2019 (modeled for the respective WBT12pm-5pm

observed in 2020; see section 2.3.2). Again, the superscripts ‘‘(i)”
or ‘‘(ii)” represent the two cases of no cooling required (N = 105
observations) and cooling required (N = 69 observations),
respectively.

2.3.6.1. Peak-demand-increase when no cooling is required. For
DCCAvg7Day, Fig. 11 (a) reveals an approximately logarithmic trend,
Table 3
Coefficients for Model 2 (prediction of the 8-hour-electricity-use when cooling is required.).
number of data points in the regressions.

m3 m4 a1 a2 b

Results 0.625 (0.447,
0.803)

0.088 (0.075,
0.101)

1.377 (0.911,
1.843)

�6.998 (-9.744,
�4.255)

0
0

P 3.12e-5 4.11e-13 7.26e-5 1.12e-4 8
N 67 (3), (6),

(8), (9), (10)Used in Eq.

11
similar to the one for increases in 8-hour-electricity-use in Fig. 9
(a). The relationship with WBT12pm-5pm shown in Fig. 11 (b) is sim-
ilar to a step function, as above. Therefore, we chose again to set
the dependence of the increases in 5-hour-peak-demand onWBT12-
pm-5pm to zero. The final model is as follows:

Model 3:

Model3 :
ŷ ið Þ
peakinc ¼ b3:1ln DCCAvg7Day þ b3:2

� �
12að Þ

ŷ ið Þ
peak2020 ¼ y ið Þ

peak2019 þ ŷ ið Þ
peakinc 12bð Þ

8<:
where by ið Þ

peakinc denotes the predicted increase in the 5-hour-peak-

demand, and by ið Þ
peak2020 denotes the predicted 5-hour-peak-demand

in 2020. b3:1 and b3:2 are the two coefficients of the logarithmic
regression model, and DCCAvg7Day is as above. The corresponding sta-
tistical metrics and modeling performance are shown in Table 4 and
6, respectively.

2.3.6.2. Peak-demand-increase when cooling is required. The rela-
tionships for increases in 5-hour-peak-demand in Fig. 12 are sim-
ilar to what we described for the increases in 8-hour-electricity-
use: (i) When cooling is required, only considering DCCAvg7Day is
not sufficient to predict the increases. Instead, the impact ofWBT12-
pm-5pm must be considered as well; (ii) a logarithmic and exponen-
tial transformation can be used to maximize the forecasting
accuracy of the subsequent linear regression model. The factor
transformations were as follows:

DCClog
Avg7Day ¼ max c1ln DCCAvg7Day

� �þ c2;0
� � ð13Þ

WBTexp
12pm�5pm ¼ d1ed2WBT12pm�5pm ð14Þ
95% confidence intervals of the coefficients are reported in parentheses. N denotes the

1 b2 b2:1 b2:2 b2:3

.137 (0.023,

.297)
0.101 (0.047,
0.154)

�1.151 (�1.408,
�0.883)

0.978 (0.839,
1.117)

1.058 (0.875,
1.241)

.55e-4 3.24e-8 3.99e-8 8.25e-9 6.14e-9



Fig. 11. (a) Increase in weekday 5-hour-peak-demand (12 pm – 5 pm) vs. CDDAvg7Day. (b) Same vs. WBT12pm-5pm. Data points are for times when cooling is not required.
The red line in (a) shows the increase in weekday 5-hour-peak-demand as predicted by the regression in Eq. (12a), and the R2 in (a) represents the evaluation result of the
intermdiate regression in Eq. (12a), not however the prediction accuracy of the final model 3. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Coefficients for Model 3 (prediction of the 5-hour-peak-demand when cooling is not required.). 95% confidence intervals of the coefficients are reported in parentheses. N denotes
the number of data points in the regressions.

k1 k2 b3:1 b3:2

Results �3.578 (�4.168, �2.988) 337.6 (333.5, 341.6) 13.17 (12.11, 14.24) 3.556 (1.282, 5.830)
P 4.88e-6 2.71e-7 3.12e-3 4.11e-7
N 105
Used in Eq. (4), (11), (12)

Fig. 12. (a) Increase in weekday 5-hour-peak-demand (12 pm – 5 pm) vs. CDDAvg7Day. (b) Same vs. WBT12pm-5pm. Data points are for times when cooling is required. The
data points in the black dashed circle represent weekdays with relatively high WBT (approximately 24 �C) and relatively low daily case numbers. The datapoints in the black
solid circle represent weekdays with relatively low WBT (about 20 �C) but relatively high daily case numbers. The red line in (a) [(b)] shows the prediction of a single factor
model using the transformed DCCAvg7Day [WBT12pm-5pm]. The R2 in (a) [(b)] represents the evaluation result of the intermediate regression using the transformed DCCAvg7Day
[WBT9am-5pm], not however the prediction accuracy of the final model 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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where DCCAvg7Day, DCC
log
Avg7Day, WBT12pm�5pm and WBTexp

12pm�5pm are as
defined above. c1, c2, d1, and d2 are the coefficients of the log and
exponential transformations. The maximum operator in Eq. (13)
sets a zero floor for the transformation so that the subsequent
regression model does not yield negative predicted values.

Next, the two transformed variables DCClog
Avg7Day andWBTexp

12pm�5pm

were used as independent variables in a two-factor linear regres-
12
sion model to forecast the increase in 5-hour-peak-demand, as
follows:

Model 4:

Model4 :
ŷ iið Þ
peakinc ¼ b4:1þb4:2DCC

log
Avg7Day þb4:3WBTexp

12pm�5pm 15að Þ
ŷ iið Þ
peak2020 ¼ y iið Þ

peak2019þ ŷ iið Þ
peakinc 15bð Þ

8<:



Table 5
Coefficients for Model 4 (prediction of the 5-hour-peak-demand when cooling is required.). 95% confidence intervals of the coefficients are reported in parentheses. N denotes the
number of data points in the regressions.

k3 k4 c1 c2 d1 d2 b4:1 b4:2 b4:3

Results 81.38
(57.86,
104.9)

0.088
(0.075,
0.102)

212.9
(93.94,
331.8)

�1030
(�1743,
�325.6)

6.426
(9.711,
3.451)

0.1678
(0.1123,
0.2233)

�248.9
(�305.1,
�192.7)

1.0963
(0.8973,
1.2953)

0.9969
(1.1196,
0.8742)

P 6.72e-5 1.19e-12 9.61e-4 4.47e-5 3.75e-3 7.22e-4 3.58e-5 6.64e-7 1.77e-11
N 69
Used in Eq. (5), (11), (13), (14), (15)

Table 6
Model accuracy determined from the observed and predicted 8-hour-electricity-use and 5-hour-peak-demand in 2020, as shown in Eq. (16). N denotes the number of data points
for each R2 statistic.

Model 1: 8-hour-electricity-use
without cooling

Model 2: 8-hour-electricity-use
with cooling

Model 3: 5-hour-peak-demand
without cooling

Model 4: 5-hour-peak-demand
with cooling

R2 0.57 0.84 0.56 0.80
N 107 67 105 69
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where, by iið Þ
peakinc denotes the predicted increase in the 5-hour-peak-

demand, and by iið Þ
peak2020 denotes the predicted 5-hour-peak-demand

in 2020. b4:1, b4:2, and b4:3 are the three coefficients of the 2-factor
linear regression model, whose statistical metrics and modeling
performance are shown in Table 5 and 6, respectively.

2.4. Monte Carlo simulation for possible future scenario of Covid-19
lockdown during warm weather

Our ultimate objective is to predict the possible values of 8-
hour-electricity-use and 5-hour-peak-demand in the future, if
widespread stay-at-home behavior (due to a worsening pandemic
or other reasons) and warm weather were to coincide in NYC. We
chose a simulation for this rather than the directly observed data
itself, for the following reason: In 2020, NYC did not experience a
scenario when high DCCAvg7Day coincided with high WBT. Rather,
in April, when the daily case numbers were at their highest, the
WBT in NYC was still below the value of WBTthresh, and air condi-
tioning did not yet take place at any material rate. When WBT rose
in June and July, the impacts of the pandemic in NYC had eased,
and people were no longer required to comply with the stay-at-
home guidelines (known as phase one and phase two reopening).
There is therefore no directly observable electricity usage data
for the putative ‘‘worst case” scenario of high DCCAvg7Day (and thus
a high portion of residents working/studying from home) com-
bined with high temperatures.

For such a prediction, we extracted those observed values of the
two predictors (DCCAvg7Day and WBT) that met the assumed condi-
tions separately and recombined them to create a new dataset via
simulation, as follows: We selected only the subset of observed
DCCAvg7Day that were greater than half of its Jan.-Dec. 2020 maxi-
mum (i.e., greater than 2,651) and only the WBT that were greater
than WBTthresh. Then, in a Monte Carlo simulation [39], we ran-
domly sampled 1,000 times from the two extracted subsets to gen-
erate a new set of predictive factors consisting of 1,000 pairs of
data (each pair with one value for DCCAvg7Day and one value for
WBT). The simulated factors were then used in Eq. (10) and Eq.
(15) to predict the corresponding 1,000 predictions for 8-hour-
electricity-usage (kWh) and the 1,000 predictions for 5-hour-
peak-demand (Watt).

2.5. Evaluation metric for prediction accuracy

In order to assess the prediction accuracy of the four models
(Model 1 – 4), we compared the predicted values of the 8-hour-
13
electricity-use and 5-hour-peak-demand to the respective values
observed in 2020 using the common R2 metric (coefficient of
determination):

R2 ¼ 1�
Pn

i¼1 yi � byi� �2Pn
i¼1 yi � yð Þ2

ð16Þ

where yi is the observed 8-hour-electricity-use or 5-hour-peak-
demand in 2020, and byi is the corresponding predicted value, and
the corresponding evaluation results of the four models are shown
in Table 6. It should be noted that the R2 results in Figs. 7-12 are the
intermediary evaluation results of the single-factor regressions
needed in the stepwise modeling process, which do not reflect the
accuracies of the four models as evaluated by Eq. (16).
3. Results

3.1. Model calibration and prediction accuracy

As outlined in the section Data and Methods, we used a set of
four models to predict the two electricity usage characteristics
we focused on in this study: (i) The cumulative 9am-5 pm electric-
ity usage (in kWh) for the average apartment on weekdays (hence-
forth ‘‘8-hour-electricity-use”); and (ii) the highest hourly peak
demand (in Watt) for the average apartment in the hours of
12 pm-5 pm (henceforth ‘‘5-hour-peak-demand”). The two inde-
pendent variables used in each prediction are (i) the 7-day rolling
average of daily confirmed Covid-19 case numbers in NYC prior to
the day of observed electricity use (DCCAvg7Day); and (ii) the out-
door WBT averaged over the respective time window on the day
of observed electricity use, WBT9am-5pm or WBT12pm-5pm.

Specifically, Model 2 and Model 1 predict the 8-hour-
electricity-use, separately for the two cases when cooling is
required or not, respectively. Model 4 and Model 3 predict the 5-
hour-peak-demand for the same two cases. The regression coeffi-
cients and their 95% confidence intervals for all models are pro-
vided in Tables 2-5. Fig. 13 displays the predicted and observed
8-hour-electricity-use and 5-hour-peak-demand in 2020. The pre-
diction accuracies, assessed as R2 separately for each of the four
models, are shown in Table 6.

Overall, the models enable robust predictions of the two elec-
tricity usage characteristics in 2020, with R2 from 0.56 to 0.84
(Table 6). However, differences in accuracy between the 4 models
exist. The prediction accuracy is higher at higher temperatures of
WBT greater than 13.8 �C (R2 of 0.84 and 0.80 for Models 2 and



Fig. 13. Model performance. (a) Observed vs. predicted 8-hour-electricity-usage in 2020. (b) Same for 5-hour-peak-demand.
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4) than the accuracy at smaller temperatures when no air condi-
tioning is required (R2 of 0.57 and 0.56 for Models 1 and 3). The
more accurate regime is key to determining whether there are
potential challenges and risks for electricity grids (see Conclusions
and Discussion). Another, but less pronounced difference is that,
within the high temperature regime, the model to predict the 8-
hour-electricity-use (R2 = 0.84 for Model 2) is moderately more
accurate than the model for the 5-hour-peak-demand (R2 = 0.80
for Model 4). This is also reflected in the narrower 95% confidence
intervals of the respective model coefficients. It is possibly due to
more volatile/idiosyncratic cooling loads during the summertime.
The main conclusions of this paper (section 3) are reached by Model
2 and Model 4 (i.e., the high-temperature cases where cooling is
required), which have promising accuracies with the R2 of 0.84
and 0.80, respectively.
3.2. Forecasting the two usage characteristics in a hypothetical future
scenario

Finally, the models were applied to predict the possible 8-hour-
electricity-use and 5-hour-peak-demand in a scenario in which
both warm weather and widespread stay-at-home behavior –
due to (for example) a renewed, severe level of the pandemic –
might coincide in NYC or similar metropolitan areas in the future.
As shown in the preliminary analyses in section 2, there are no ob-
served data points for the combined condition, where WBT is larger
than WBTthresh (13.8 �C) and DCCAvg7Day is larger than 2,651 (half of
the maximum DCCAvg7Day observed in Jan.-Aug. 2020). For such a
scenario, a Monte Carlo simulation (section 2.4) was employed to
generate new data satisfying the respective conditions. The Monte
Carlo simulation provided the following advantage: In the range of
interest, neitherWBT nor DCCAvg7Day followed a normal distribution
(Kolmogorov-Smirnov (K-S) test [40] yields p<0.05). Therefore, a
Monte Carlo simulation is likely to generate more realistic electric-
ity data for the two predictors, instead of simply using the averages
Table 7
Predicted results (per average, occupied apartment) of the 8-hour-electricity use and 5-hou
and Model 4 respectively, under the hypothetical scenarios covering a range ofWBT greater
values, with values for ± 1 standard deviation in parentheses.

Predicted results in 2020 M

8-hour electricity use (kWh) 7.92 (8.21, 7.63) 6.6
5-hour peak demand (W) 1289 (1369, 1211) 89

14
and plus/minus ranges of the two predictors in the non-linear
regression models.

The corresponding predicted future-possible 8-hour-electricity-
use and 5-hour-peak-demands are shown in Table 7. The Monte
Carlo simulations show that, for the average, occupied apartment,
the 8-hour-electricity-use and 5-hour-peak-demand are likely to
be 7.63–8.21 kWh and 1211–1369 Watts, respectively. Note that
this is an estimate spanning a range of conditions where WBT is
larger than 13.8 �C and DCCAvg7Day is larger than 2,651. As seen in
Fig. 8, the highest observed 8-hour-electricity-use and 5-hour-
peak-demand in 2019 were 6.61 kWh and 894 Watts respectively.
Compared to these observed values, we therefore predict that the
8-hour-electricity-use could be 15%—24% higher than the one
under normal circumstances (pre-stay-at-home period), and the
5-hour-peak-demand could be 35% – 53% higher.

Large WBT values could lead to a potential rapid rise of the 5-
hour-peak-demand, and we thus further explored the observed
and predicted 5-hour-peak-demand under the various DCCAvg7Day
scenarios andWBT12pm-5pm observed in Jul.-Aug., the warmest sum-
mer months [31] (Fig. 14). One observes that when WBT12pm-5pm is
constant, the 5-hour-peak-demand increases logarithmically with
the increase in the number of DCCAvg7Day, as stated in the estab-
lished Model 4 (section 2.3.6). Observe that the maximum 5-
hour-peak-demand in 2019 was 894 Watts at WBT12pm-5pm of
24.2 �C and 0 cases, and the maximum observed value in 2020
was 1,188 Watts at WBT12pm-5pm of 24.4 �C and DCCAvg7Day of 396.
The green band illustrated in Fig. 14 corresponds to the projected
peak for the highest-case load band of between 2,651 and 5,301
of DCCAvg7Day, if these cases were to occur during the hotter temper-
atures shown here that require cooling. The projected 5-hour-
peak-demand could certainly exceed the maximum observed one
in 2019 (894 Watts), and at hotter temperatures could be twice
as high as the corresponding 2019 peak, potentially leading to
new risks for electrical grids in the future (see Conclusions and Dis-
cussion). The peak demand for any hour in 2019 was observed to be
up to 983 Watts, which, without stay-at-home orders, commonly
r-peak-demand, generated using Monte Carlo simulations (section 2.4) with Model 2
than 13.8 �C and DCCAvg7Day from 2,651 to 5,302. The predicted results show the mean

aximum observed in 2019 Estimated percentage increase ranges

1 15%—24%
4 35%—53%



Fig. 14. Observed and predicted weekday 5-hour-peak-deamd (12 pm-5 pm, per apartment) in Jul.-Aug. 2019 and 2020 under the scenarios of various DCCAvg7Day. The
green region represents the prediction under a hypothetical future scenario, in which DCCAvg7Day is larger than 2,651 (larger than half of the Jan.-Aug. 2020 maximum). For
comparison, respective 2019 values, as well as the highest-ever observed 5-hour-peak-demand in 2019 and 2020 (894 Watt and 1,188 Watt, respectively) are also shown. All
temperatures shown in the figure are WBTs, and all the values of COVID-19 cases represent DCCAvg7Day. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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occurs only in the late evenings over the summer [31]. The pro-
jected green band also exceeds this peak by a wide margin.
4. Conclusions and Discussion

Comparing 2020 with 2019 residential electricity consumption
data, a case study was conducted to investigate and forecast Covid-
19-related increases in residential electricity usage of occupied
apartments in NYC, based on a sample of 390 apartments. The
apartments are, in size and vintage, representative of NYC residen-
tial building stock, and their electricity consumption is consistent
with other multi-family settings in the same climate region. We
focused on two characteristics of residential electricity usage, (i)
the electricity consumption (kWh) of an average apartment on
weekdays in the 8 h from 9am to 5 pm (in order to gauge shifts
in energy use and commensurate financial burdens from commer-
cial buildings and schools to the residential sector); and (ii) the
hourly peak demand (Watt) of an average apartment in the 5 h
between 12 pm and 5 pm (in order to gauge possible stress on
the electricity grid when this peak either coincides with system-
wide loads or becomes larger than what feeders and distribution
lines in residential areas were designed to handle).

We identified two factors and built a series of regression models
which can predict the above two characteristics with an R2 of 0.56–
0.57 for days when no cooling is required and 0.80–0.84 for war-
mer days. The two factors are the severity of the pandemic (mea-
sured as a 7-day rolling average of daily confirmed Covid-19
cases in NYC) and the outdoor WBT (measured as the average
WBT during the respective 8-hour or 5-hour window). The models
indicate that increases in residential electricity usage between
2019 and 2020 were the higher, the more severe the pandemic
(which we interpret as a proxy for the portion of residents working
and studying from home). And for times when cooling was
required, these increases were further modulated by the outdoor
temperature. Therefore, in NYC in 2020, usage increases versus
15
2019 continued to grow more pronounced during the summer
months even while lockdown measures were being partially lifted.

In a Monte Carlo simulation, we then used the models to fore-
cast the two usage characteristics for conditions which, fortu-
nately, did not actually occur in 2020, but which could occur in
the future in NYC, in similar regions, or indeed in future pandemics
or natural catastrophes with comparable stay-at-home guidelines.
These conditions were the combination of high outdoor wet bulb
temperatures (such that cooling in the apartments is required)
coupled with medium to high pandemic severity (and with it a
high presumed portion of residents working or studying from
home).

We found that under such assumed future conditions, the
weekday 8-hour-electricity-use (9am-5 pm) could be 15%—24%
higher than the one under normal circumstances (i.e., no stay-at-
home behavior), implying a corresponding substantial increase in
electricity costs for residents.

We further found that the weekday 5-hour-peak-demand
(12 pm-5 pm) could be 35%—53% higher than otherwise. This sug-
gests possible grid stress especially if substantial increases in res-
idential demand coincide with recovery in commercial demand.
At high daily case numbers (100% of Jan-Aug. 2020 maximum)
and WBT12pm-5pm above 25 �C, the 5-hour hourly peak demand
would be nearly twice that of the maximum 5-hour-peak-
demand in 2019 (894 Watts). It would also be much higher than
the largest-ever observed peak demand in 2019 (983 Watts). In
predominantly residential network areas and feeders with no com-
mensurate load reduction in commercial buildings to offset this
increase, such high peaks – nearly twice as high as the prior year
peak – could lead to loads that exceed the designed feeder capac-
ity, possibly leading to failure risks of the local substation and dis-
tribution infrastructure.

Note that the model predictions are for occupied apartments for
the specific climatic settings of NYC. For certain times of the year
and/or for geographies where a large fraction of apartments is



L. Li, C.J. Meinrenken, V. Modi et al. Energy & Buildings 251 (2021) 111330
unoccupied (because residents choose to temporarily move away
from urban areas), the prediction for such specific neighborhoods
would have to be reduced accordingly. Residential consumption
in aggregate is impacted by what fraction of residents move away
and where they move, changes in occupancy patterns of an occu-
pied apartment, and climatic conditions.

It should be noted that the impacts of the pandemic on the way
people work may be somewhat irreversible, and could have long-
term permanent effects on some members of the workforce in
the future [41]. Based on the results of the US remote work survey
of PricewaterhouseCoopers, about 72% of workers expressed that
they would like to work from home for two days or more even
though the pandemic is no longer a concern [42]. Therefore, our
results can be instructive for the future of the residential electricity
sector if the current work/study from home behavior becomes a
permanent ‘‘new-normal” lifestyle.

This study can also provide a meaningful reference point for
building managers and utilities to improve the balance of supply
and demand in future grids, for example through market
mechanisms-based demand response [47,48,55], electrical storage
(whether onsite [49], distributed [44], or in electric vehicles [46]),
combined thermal and electrical storage [50], proactively pairing
residents with apartments that match their personal climate pref-
erence [51], or, finally, modifying electicity consumption patterns
via sending personalized feedback messages to residents [22]. In
such contexts, the models introduced in this study could be inte-
grated with emerging smart-grid management techniques, in order
to improve the residential electricity forecasting accuracy [48]
under stay-at-home guidelines due to a pandemic or other natural
catastrophes – or to account for the potential of a ‘‘new-normal”
lifestyle, even in the absence of a catastrophe. A further extended
study could be focused on employing advanced forecasting tech-
niques by applying a more comprehensive dataset to overcome
the data limitation discussed in this study, especially once addi-
tional electricity data will be available for analysis as the pandemic
evolves.
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