
Applied Energy 304 (2021) 117745

Available online 13 September 2021
0306-2619/© 2021 Elsevier Ltd. All rights reserved.

Promoting reproducibility and increased collaboration in electric sector 
capacity expansion models with community benchmarking and 
intercomparison efforts 

Candise L. Henry a,b,*, Hadi Eshraghi c, Oleg Lugovoy d, Michael B. Waite e, Joseph F. DeCarolis c, 
David J. Farnham b, Tyler H. Ruggles b, Rebecca A.M. Peer f,b, Yuezi Wu e, Anderson de Queiroz c, 
Vladimir Potashnikov g, Vijay Modi e, Ken Caldeira b 

a RTI International. Center for Applied Economics and Strategy. 3040 E Cornwallis Rd, Durham, NC 27709, United States 
b Carnegie Institution for Science. 260 Panama St, Stanford, CA 94305, United States 
c Department of Civil, Construction, and Environmental Engineering, NC State University. 2501 Stinson Drive Box 7908, Raleigh, NC 27695, United States 
d Environmental Defense Fund. 1875 Connecticut Ave NW, Ste 600, Washington, DC 20009, United States 
e Quadracci Sustainable Engineering Lab, Columbia University. 500 West 120th Street, New York, NY 10027, United States 
f Department of Civil and Natural Resources Engineering, University of Canterbury. Private Bag 4800, Christchurch 8140, New Zealand 
g Gaidar Institute for Economic Policy. 3-5 Gazetny Lane, Moscow 125993, Russia   

H I G H L I G H T S  

• Both parametric and structural differences exist in capacity expansion models. 
• We used simple cases to eliminate all parametric uncertainty in benchmarking effort. 
• We identified structural differences that were previously assumed to be unimportant. 
• We introduce an open-source test dataset for the community to use and build on. 
• Community-wide benchmarking increases transparency among capacity expansion models.  
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A B S T R A C T   

Electric sector capacity expansion models are widely used by academic, government, and industry researchers for 
policy analysis and planning. Many models overlap in their capabilities, spatial and temporal resolutions, and 
research purposes, but yield diverse results due to both parametric and structural differences. Previous work has 
attempted to identify some differences among commonly used capacity expansion models but has been unable to 
disentangle parametric from structural uncertainty. Here, we present a model benchmarking effort using highly 
simplified scenarios applied to four open-source models of the U.S. electric sector. We eliminate all parametric 
uncertainty through using a common dataset and leave only structural differences. We demonstrate how a 
systematic model comparison process allows us to pinpoint specific and important structural differences among 
our models, including specification of technologies as baseload or load following generation, battery state-of- 
charge at the beginning and end of a modeled period, application of battery roundtrip efficiency, treatment of 
discount rates, formulation of model end effects, and digit precision of input parameters. Our results show that 
such a process can be effective for improving consistency across models and building model confidence, sub-
stantiating specific modeling choices, reporting uncertainties, and identifying areas for further research and 
development. We also introduce an open-source test dataset that the modeling community can use for unit 
testing and build on for benchmarking exercises of more complex models. A community benchmarking effort can 
increase collaboration among energy modelers and provide transparency regarding the energy transition and 
energy challenges, for other stakeholders such as policymakers.  
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1. Introduction 

Models focused on the electric sector often use different cost and 
technical inputs, demand and resource availability profiles, temporal 
and spatial resolutions, capacity retirement and policy assumptions, and 
even mathematical formulations in order to address research questions 
of various scales and purposes. It is unsurprising, therefore, that 
different models output different results for a given planning or opera-
tions problem. For instance, to identify where new transmission would 
have the greatest impact on overall grid stability, sub-hourly resolution 
models meant for high-fidelity power flow scheduling will likely not 
produce the same results as models aimed at understanding the century- 
scale transition to a low-carbon economy. But even among models that 
are designed to answer the same type and scale of questions, dissimilar 
results are common given the parametric and structural differences 
among competing models [1,2]. Parametric uncertainty arises when 
researchers use diverging input parameters such as costs, technology 
specifications (e.g., heat rates), electricity demand, and resource avail-
ability. Structural uncertainty, on the other hand, stems from differences 
in model representations of electric systems and how models are 
mathematically formulated. Specific examples in which model struc-
tures can differ include whether long duration storage is included in a 
capacity expansion model or whether battery roundtrip efficiency is 
applied to electricity entering or exiting the battery. Given that both 
parametric and structural differences are often present across models, it 
can be difficult to identify the origin(s) of diverging results among even 
seemingly similar models. Yet, in order to fully understand why models 
intended to address similar questions might give different outcomes, it is 
important for researchers to disentangle parametric from structural 
uncertainty. 

Here, we present the first intercomparison effort of capacity expan-
sion models that removes all parametric uncertainty to focus only on 
structural differences. Our approach allowed us to pinpoint the origins 
of specific divergences between our models – also applicable to other 
capacity expansion models – that otherwise would have been over-
looked or perceived as unimportant. More importantly, the structural 
differences we identified here indicate the potential for significant di-
vergences among the more complex model formulations common in the 
research literature and planning studies. As such, this work highlights 
the benefits of a concerted model benchmarking effort across the 
broader capacity expansion modeling community. Systematic ap-
proaches for comparing models could help energy researchers identify 
how the assumptions about inputs and model structures embedded in 
their own models differ from others that are designed to answer similar 
research questions. They could help researchers justify the assumptions 
they make in their own models in the context of other models. 
Furthermore, such approaches enable new forms of communication 
among modeling efforts that could help further strengthen the growing 
community of energy modelers, and lead to the continued improvement 
of individual models. A systematic model benchmarking effort can also 
benefit the broader energy research community by increasing the 
transparency of models being used in power sector planning and poli-
cymaking. It is helpful for stakeholders to understand the assumptions, 
strengths, limitations, and uncertainties of these models, as they are 
often used to help inform the direction of power sector development. 

While we focus on four open-source models that represent the U.S. 
electric sector, we note that our results should be relevant to other 
optimization-based capacity expansion models that represent other 
countries. Capacity expansion modelers across the world can benefit 
from community benchmarking efforts. 

1.1. Electric sector capacity expansion models 

In this work, we specifically focus on electric sector capacity 
expansion models, which are used in academic studies and in policy-
making today to evaluate power sector policies and project the 

economic viability of various technologies [3–13]. We define capacity 
expansion models as those that employ linear or mixed integer pro-
gramming to examine capacity deployment and utilization over future 
decades. These models are often initiated from baselines that represent 
real existing infrastructure, but can begin from baselines with no exist-
ing infrastructure. Moreover, we define capacity expansion models as 
those that optimize at an aggregated level without chronological unit 
commitment, which excludes those that are coupled with production 
cost models to resolve the behavior of individual power plants [14]. The 
capacity expansion models we examine here consider electricity trans-
mission but ignore details about power flow parameters such as voltage 
angles, real power, and reactive power. 

Our model simulations assume perfect markets and rational actors 
with complete information and perfect foresight. The relative simplicity 
of these models should increase likelihood of different models finding 
problem solutions that are numerically similar. Of course, electricity 
systems around the world operate under different and evolving degrees 
of regulatory control and market forces. In contrast to perfect foresight, 
uncertainty in prices and demand are expected to increase due to 
increased competition that accompanies the trend towards deregulation 
[15]. Linear optimization cannot capture the richness of decisions as 
they are made, so utility planners are moving from optimization models 
to behavioral simulation modeling and agent-based methods [16]. Here 
we focus on the degree of agreement among the simplest and most 
transparent electricity system models, with the understanding that this 
work would help provide basis for similar comparison of more 
comprehensive models. 

1.2. Existing energy system model comparison efforts 

Various projects to compare energy system models exist. The Stan-
ford Energy Modeling Forum represents one of the model intercom-
parison efforts aimed at answering specific policy questions [17]. Their 
primary goal is not to benchmark and identify differences among 
models, but to produce an ensemble of projections from different inte-
grated assessment models (IAMs) and energy models given prescribed 
policy scenarios. Several other past and current US and EU sponsored 
projects have taken a similar approach for the intercomparison of IAMs, 
including the Innovation Modeling Comparison Project [18], Climate 
Change Science Program, Asian Modeling Exercise [19], RoSE Project 
[20], and Latin America Modeling Project [21]. 

Similarly, Long et al. [22] explored the costs and capacity re-
quirements of various scenarios under California’s new zero carbon 
mandates using three distinct models with the same historical input data 
and future technology costs. The goal of this work was to create and 
assess an ensemble of projections rather than to benchmark the models 
used. 

At the same time, many authors have conducted comprehensive re-
views on the landscape of electricity sector models and the modeling 
tools available to address different questions [23–28]. However, these 
works are generally aimed at qualitatively comparing the capabilities of 
various existing capacity expansion models rather than conducting 
model intercomparison or benchmarking efforts with harmonized input 
datasets. 

The Renewable Energy and Efficiency Modeling Analysis Partnership 
(REMAP) in 2009 was an early intercomparison effort that attempted to 
benchmark what the authors classified as energy-economy models using 
harmonized assumptions [1]. The developers of eight models, which 
included capacity expansion models, collaborated to assess whether 
model outputs would converge if major input assumptions were 
consistent across the models. However, due to the complexity of some of 
the models and the fact that they were burdensome to change, inputs 
could not be completely harmonized and both parametric and structural 
uncertainties remained in the outcomes. The REMAP authors did find, 
though, that variation among models diminished significantly when the 
inputs were better aligned. 
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Mai et al. [2] conducted a similar, more recent benchmarking effort 
for electric sector capacity expansion models. The authors ran a set of 
coordinated scenarios with harmonized technology costs on three 
widely used models, which each have highly resolved representations of 
the U.S. electricity sector. Their primary aims were to identify best 
practices for representing variable renewable (VRE) technologies and to 
isolate the effect that model structures might have on VRE deployment 
outcomes. They found that significant differences in wind and solar 
installed capacities in the least-cost system persisted in their compari-
son, implying that the parametric and structural components they did 
not harmonize – such as transmission costs, financing costs, and model 
structures – had important effects on model outputs. 

Aside from these individual studies, community-wide benchmarking 
efforts for capacity expansion models and broader macro-energy system 
models [29] do not exist at the same scale as they do for production cost 
(unit commitment) models. The Institute of Electrical and Electronics 
Engineers (IEEE) developed Benchmarks for the Unit Commitment 
Problem in Power Grid Lib (PGLib), which is a collection of open-source 
GitHub repositories containing benchmarks for different production cost 
models to validate power system algorithms [30], (power-grid-lib. 

github.io). Research groups are encouraged to input the various case 
files into their own models to compare results against the benchmark 
values. This approach not only allows model developers to better un-
derstand how their model differs from other models, but it also helps 
developers maintain consistency when expanding or improving existing 
models. 

In this study, we highlight the benefits of a benchmarking process for 
electric sector capacity expansion models by demonstrating that specific 
and important structural differences can be identified through this 
process. We focused on four models that have all been used in published 
literature. This work differs from previous studies because we conducted 
a harmonization process of “turning off” various model capabilities in 
order to remove all parametric uncertainty from these models. This 
included eliminating transmission capabilities, capacity retirements, 
operating and capacity reserves, frequency regulations, policy con-
straints, and any technologies other than solar, wind, natural gas, nu-
clear, and battery storage. Capital, operation and maintenance, and fuel 
costs as well as technical specifications of these five technologies were 
aligned using a common dataset. This allowed us to pinpoint specific 
structural differences in how these five technologies and the objective 
function are formulated, without the compounding uncertainty from 
parametric differences [31]. Identifying where structural differences can 
occur between models is important because it allows model users to 
determine which structural assumptions should be considered alongside 
parametric input decisions when addressing certain research questions. 
The purpose of this work is to demonstrate the advantages of model 
benchmarking for electric sector capacity expansion models, to identify 
important structural differences across the participating models, and to 
provide a publicly available input dataset that can serve as the basis for 
the development of a suite of official tests. While the work presented 
here focuses on the electric sector, the approach can be applied more 
broadly to a variety of macro-energy models. 

2. Methods 

2.1. Model structures 

In this analysis, we compared four models with similar core cost 
optimization structures and system constraints: North Carolina State 
University’s Tools for Energy Model Optimization and Analysis 
(Temoa), Carnegie Institution for Science’s Macro Energy Model (MEM), 
the independently-developed energyRt model used by the Environ-
mental Defense Fund, and Columbia University Sustainable Engineering 
Lab’s System Electrification and Capacity Transition (SECTR) model. All 
co-authors of this paper were involved in the development of one of the 
four models. The respective authors for each model, the high-level 
model details, and links to each model’s Github repository can be 
found in Table 1. 

These four models are open-source and are all designed to minimize 
total system cost given cost and technical specifications, capacity factors 
representing resource availability, and a time-series dataset of electricity 
demand. The objective function underpinning each of the models can be 
described by:   

where: 
g is the generation technology 
s is energy storage 
ch is electricity charging (entering) the battery 
ds is electricity discharging (exiting) from the battery 
pfixed is the capital and fixed O&M cost1 ($/kW for generators, $/kWh 

for storage) 
pvar is the variable cost including fuel and variable O&M ($/kWh) 
C is the capacity of the technology (kW for generators, kWh for 

storage) 
Dt is the electricity dispatch at time step t (kW) 
T is the total hours in the simulation 
Here, the decision variables for determining minimum system cost 

are the capacities (Cg, Cs) and hourly dispatch (Dg
t , Dch

t , Dds
t ) of each 

technology. The constraints for capacity and dispatch of each generation 
and storage technology as well as for system energy balance are: 

Cg,s ≥ 0 ∀g, s (2)  

0 ≤ Dg
t ≤ Cgf g

t ∀g, t (3)  

0 ≤ Dch
t ≤

Cs

τch ∀s, t (4)  

0 ≤ Dds
t ≤

Cs

τds ∀s, t (5)  

0 ≤ Ss
t ≤ Cs ∀s, t (6)  

0 ≤ Dds
t Δt ≤ Ss

t (1 − δ) ∀s, t (7)  

∑

g
Dg

t Δt +
∑

s
Dds

t Δt = Mt +
∑

s
Dch

t Δt ∀g, s, t (8) 

minimize : system cost =
∑

g
pg

fixedCg +
∑

g

(∑
tpg

varD
g
t

T

)

+
∑

s
ps

fixedCs +
∑

s

(∑
tpch

varDds
t

T

)

+
∑

s

(∑
tpds

varDch
t

T

)

(1)   

1 Note that the fixed O&M costs are amortized in these models. 
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where: 
ft is the capacity factor of the generation technology in time step t 

(fraction) 
τ is the storage charging and discharging duration (h) 
St is the energy in storage at the end of time step t (kWh) 
δ is the storage decay rate (fraction) 
Mt is electricity demand at time step t (kWh) 
Δt is time step size (h) 
While all four models have this underlying core formulation capa-

bility, each also incorporates additional components that increase the 
complexity of the model and could potentially create differences in 
model structure. For instance, the four models simulate different mixes 
of technologies (e.g., different types of storage), and have different rules 
for separate technologies and how they behave (e.g., ramping limits or 
reserve margin constraints). In this analysis, we attempted to reduce the 
presence of components that can lead to structural complexity by 
“turning off” model features where possible. Specifically, each model 
was simplified to operate as a one-node electricity system where 100% 
of demand is met by an electricity supply at the same node without any 
transmission costs or losses. We simulated only one year of hourly 
dispatch from a greenfield site (no existing infrastructure) to remove 
structural differences from capacity building and vintaging constraints. 
Subsequently, decommissioning costs are also not considered. We did 
not specify upper bounds on the quantity of new generation that can be 
built. We did not include operating reserve, capacity reserve margin, 
frequency regulation, or policy constraints. Finally, we specified the 
technology mix for each case we ran as well as the cost inputs and 
technical specifications for these technologies. Such parsimonious as-
sumptions help to avoid strong priors about what model developers 
expect from capacity and generation mixes in the real world. 

2.2. Harmonized data inputs 

We created five hypothetical cases with harmonized input datasets 
for which the models solved for the cost-minimizing system (Table 2): 

S1: Natural gas, nuclear, wind, solar, and storage at costs defined in 
AEO 2018 (Base Case) 
S2: Natural gas, nuclear, wind, solar, and storage at costs that were 
predefined fractions of AEO 2018 costs such that all technologies are 
cost competitive (more details below) (Alternative Case) 
S3: Solar and battery only at AEO 2018 costs 
S4: Wind only at AEO 2018 costs 
S5: Nuclear only at AEO 2018 costs 

In each of these cases, all models used the same capital costs, fuel 
costs, and fixed and variable operation and maintenance (O&M) costs 
from the Energy Information Administration (EIA) 2018 Annual Energy 
Outlook (AEO) for each of the generation and storage technologies, as 
well as the same discount rate, capital recovery factors, and project 
lifetimes (Appendix Table A1). Costs were held constant through each 
model run, i.e., costs of generation did not change with increasing ca-
pacity. Battery charging efficiency, decay rate, and charging time for 
storage were specified. The same hourly demand profile from 2016 was 
used by all models and represents aggregated demand for the contiguous 
U.S.[32]. The same 2016 hourly solar and wind capacity factor profiles 
were also applied to all models, and were derived from wind speed and 
solar irradiance information from the MERRA-2 satellite reanalysis 
dataset [33]. The models solved all 8784 h simultaneously as the solu-
tion approach. The harmonized cases and input datasets described here 
allow us to benchmark the outputs of our different models but are not 
meant to represent predictions of future conditions. As such the years 
represented by our datasets are unimportant for the purpose of this 
analysis. The input datasets for the five cases used can be accessed at 
github.com/carnegie/capacity-expansion-model-intercomparison. 

Case S1 was selected for model benchmarking because it applies AEO 
costs for multiple technologies that were meant to reflect real prices in 
2018. This case provided a starting point for us to begin comparing 
model structures before assessing individual technologies. In case S1, 
the capital cost of natural gas combined cycle plants is almost half that of 

Table 2 
Single-node cases used in this model intercomparison. The capital, fuel, and 
O&M cost inputs are taken from the [34] Annual Energy Outlook. The hourly 
demand profile represents aggregate demand for the contiguous U.S. [32] and 
the hourly solar and wind capacity factor profiles are derived as a U.S.-wide 
average from MERRA-2 [33]. The input datasets are available at: github.co 
m/carnegie/capacity-expansion-model-intercomparison.  

Case S1 S2 S3 S4 S5 

Technologies Natural gas, nuclear, solar, 
wind, and battery storage 

Solar and 
battery 
storage 

Wind Nuclear 

Cost Inputs 2018 
EIA 
AEO 

Hypothetical 
costs adjusted 
from 2018 EIA 

AEO 

2018 EIA 
AEO for 
solar and 
battery 

2018 
EIA 
AEO 
for 

wind 

2018 EIA 
AEO for 
nuclear 

Demand 
Input 

Hourly demand for one year [32] 

Solar Input Hourly solar capacity factor for one year [33] 
Wind Input Hourly wind capacity factor for one year [33]  

Table 1 
Description of the four models used in this study.  

Model Programming 
Language 

Optimizer Default 
Time Steps 

Geographical 
Coverage 

Commodities Organization Authors Repository 

Temoa Python Any 
optimizer 

From sub- 
hourly to 
seasonal 

Regional to 
National 

Whole energy system 
energy carriers and 
emissions 

North Carolina State 
University 

HE, JD github.com/ 
TemoaProject 

MEM Python Any 
optimizer 
Default: 
Gurobi 

Hourly Regional to 
National 
(idealized) 

Electricity Carnegie Institution for 
Science 

CLH, DJF, 
THR, RP, 
KC 

github.com/carnegie/ 
MEM_public/tree/ 
Henry_et_al_2021 

energyRt R + (GAMS/ 
Python/  

Julia/ 
MathProg) 

Any 
optimizer 

From sub- 
hourly to 
seasonal 

Regional to 
National 

Any Independent 
development 

OL, VP github.com/energyRt/ 
energyRt 

SECTR Python Gurobi Hourly Regional to 
National 

Electricity 
Fossil fuels in 
buildings and 
vehicles 

Quadracci Sustainable 
Engineering Lab, 
Columbia University 

MBW, YW, 
VM 

github.com/SEL- 
Columbia/SECTR- 
OneNode  
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the next cheapest technology, making it the most cost competitive of the 
five technologies we include. In all five cases, costs of curtailing wind 
and solar were zero. 

The natural gas, nuclear, wind, solar, and storage cost inputs in case 
S2 were selected to capture a scenario where all technologies are cost 
competitive. These costs are not reflective of any real-world scenario but 
were determined by the authors using one of the models, MEM. Spe-
cifically, we iteratively modified the AEO 2018 case S1 costs until all 
technologies were deployed at some point during the 8784-hour time 
frame. Each modeling group then exogenously applied these same exact 
predetermined technology costs into their respective models. This case 
was designed to increase complexity in our highly simplified system and 
highlight possible differences in each technology between models. 

Cases S3-S5 were designed for unit testing of mathematical formu-
lations representing individual technologies. Unit tests are a form of 
software testing where individual components of a code are tested to 
validate that each unit performs as expected. Here, our unit tests isolated 
individual technologies in our models and allowed us to pinpoint where 
structural differences exist in our code. 

While the cases introduced here were developed over time through 
dialogue among the four modeling groups involved in this paper, they 
can be applied to other models to investigate and benchmark results. 
Moreover, these cases were designed to be simple unit tests that can be 
expanded to test other components of capacity expansion and macro- 
energy models. 

2.3. Comparison metrics 

In order to compare the models, we examined their output system 
costs, generation and storage capacities, and hourly dispatch profiles for 
each of the cases. The combination of system cost and generation and 
storage capacity allowed us to determine whether model structures 

differed enough to warrant further investigation. Then, to pinpoint the 
causes of any differences in results and to identify which technologies 
led to these differences, we investigated the hourly dispatch profiles for 
more detail. The hourly dispatch profiles allowed us to hone in on dif-
ferences in the exact behavior of the generation technologies and the 
hourly charging and discharging of the energy storage asset. 

2.4. Iterative process of model structure harmonization 

After the initial model runs with the harmonized parameters were 
completed, we aimed for further convergence of results through 
harmonization of model structure. Our aim was not to prescribe certain 
model structures as being more or less representative of real systems, but 
rather to pinpoint which structural differences impacted results and to 
initiate discussion within our group about why certain implementation 
choices were made. Since our four models were already simplified 
through the “turning off” of various components, the additional level of 
effort for further harmonization was not prohibitive. We recognize that 
it may be unrealistic for more complex models to harmonize to the de-
gree that we do here for intercomparison, but we also emphasize how 
useful this benchmarking process is for model development by demon-
strating the type of information that we can learn from systematic 
harmonization. 

Though this model structure harmonization process is part of the 
methodology, it is presented in the Results and Discussion section below 
because it was an iterative and cooperative effort that took several steps 
with intermediate results. Between each iteration, the four model groups 
met to discuss model outputs and to collectively identify the potential 
sources of differences, as well as to come to agreement on synthesizing 
model structures. 

Fig. 1. (a) Initial and (b) final built generation capacities for each of the four models in each of the five cases. The units are in GW for natural gas, solar, wind, and 
nuclear capacities and GWh for battery storage. As can be seen in the y-axes, the built capacities for all models in case S3 and S4 are a factor of 10 greater than those 
for cases S1, S2, and S5. Also shown above each model are the corresponding total annual system costs (in billion dollars US) for each of the cases. Note that this is a 
1-year simulation, so the total annual system cost equals the total system cost. 
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3. Results and discussion 

3.1. Initial and final model results 

Fig. 1 shows the initial and final model results for all four models. 
The initial results were produced using the harmonized input datasets 
from cases S1-S5 with various model components “turned off”, but 
without iterative model structure harmonization (described in the 
following section). As can be seen in Fig. 1A, the built capacities across 
models in our “starting point” were already similar in cases S1, S4, and 
S5, due to this initial parameter harmonization process. For instance, for 
case S1, all models produced the same 716.7 GW generation capacity 
from natural gas only (Fig. 1), where 716.7 GW corresponds to the 
maximum hourly demand in our demand time series. Likewise, for cases 
S4 and S5, all models produced identical generation capacities of wind 
and nuclear, respectively (Fig. 1). 

Despite the similarities in the initial outputs, the system costs across 
all five cases as well as the built capacities in cases S2 and S3 indicated 
the presence of structural differences between the models (Fig. 1A). 
Through our iterative structure harmonization process, we were able to 
better align model outputs to reach the final values shown in Fig. 1B. For 
case S1, system costs differed by 10% between models in the initial 
output and were harmonized to be within 0.3% in the final output. For 
cases S4 and S5, system costs differed by 11% and 12% between models 
in the initial output and were harmonized to be within 0.2% and 0.3% in 
the final output, respectively. Meanwhile, in case S2, both the genera-
tion capacity and total system cost evolved substantially between the 
initial and final iterations (compare Fig. 1A and 1B). The system costs of 
the four models differed by 13% in the initial output and eventually 
converged with each structural adjustment to be within 0.3% of one 
another. 

The final output from case S3 (Fig. 1B) reveals that differences 
remained in the models that could not be addressed through the struc-
tural changes we made here. While the final system cost in case S3 
differs by less than 3% between models (Fig. 1), the generation capac-
ities in case S3 still differ substantially (16% for battery and 3% for 
solar) despite parametric and structural harmonization. Potential rea-
sons are discussed in more detail in Section 3.3. 

The exact values shown in Fig. 1 can be found in the Appendix 
(Tables B1 and B2). 

3.2. Model structure harmonization process 

In order to reach the final aligned model results shown in Fig. 1B, we 
took several steps to calibrate each of our respective models. These al-
terations were intended to eliminate model differences identified during 
the comparison process and thereby help us better understand and 
identify previously unknown model differences. Since initial differences 
were most evident in case S2, we use it here to demonstrate our process 
for identifying structural differences between our models (Fig. 2). The 
calibration process described below occurred in four steps, with each 
iteration proceeding after we identified a key source of difference be-
tween models. It is important to note again that we are not advocating 
for the specific calibration choices we made here; in fact, in many of the 
instances discussed below, the original formulations were modeling 
choices made by the authors to answer specific questions about the real- 
world electricity sector. Rather, we describe the harmonization process 
in order to demonstrate how different choices can lead to differing 
results. 

The only structural alterations in the first (initial) iteration involved 
“turning off” model components for which we had no harmonized input 
datasets. These were described in the Methods section. The results can 
be seen in Fig. 1A and iteration 1 of Fig. 2. 

To better align case S2 outputs for the second iteration, the treatment 
of the dispatchability of nuclear power was calibrated in one of the 
models: Temoa initially set nuclear as baseload generation that cannot 
be ramped up and down across times of day, but can shift output from 
one season to another. Meanwhile, the other models treated nuclear as 
dispatchable generation similar to natural gas. This difference in load 
following capability caused nuclear generation to behave differently 
between Temoa and the other models, thus impacting the generation 
portfolio and system cost in case S2. This difference could also have been 
detected by examining the case S5 hourly generation profile of each 
model after iteration 1. Examining only the system cost and generation 
capacity of nuclear from case S5 may not have alerted us to this struc-
tural difference because the capacity would still be the same, 

Fig. 2. Each model’s case S2 annual system cost after every iteration of model calibration, showing how the models converge with each adjustment. We use case S2 
as the example here because this case yielded the greatest initial (iteration 1) differences in both system cost and built capacity. 
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corresponding to peak demand. This is why examining multiple cases is 
helpful for a model intercomparison effort. The final results in Fig. 1 
show the results after ramping constraints on nuclear were removed 
from all models, and nuclear was allowed to behave as dispatchable 
generation across all four models. 

After changing the dispatchability of nuclear, we still observed dif-
ferences in model-selected generation capacity among models in case 
S2. We pinpointed battery constraints as the source of structural un-
certainty because case S3 also yielded differences. While two of the 
models initially required the battery state-of-charge to be the same at the 
start and end of the simulation, one model set the battery charge at full 
capacity in the first hour and empty in the last hour. The fourth model 
constrained the initial and final battery state-of-charge to be 50%. In the 
third iteration, models were adjusted so that all had the constraint that 
the initial and final state-of-charge are equal, model-determined 
values.2 

Along the same lines, another source of difference adjusted in the 
third iteration was related to how battery storage roundtrip efficiency 
was applied. Roundtrip efficiency can be applied to energy entering the 
battery (charging), to energy leaving the battery (discharging), or split 
between charging and discharging. This application impacts the model- 
selected battery capacity, which in turn impacts the size of the various 
generation technologies and the system cost. We harmonized all four 
models in this iteration such that roundtrip efficiency was applied to 
energy entering the battery. 

After the third iteration, all four models yielded similar built ca-
pacities in case S2 (Fig. 1B). However, energyRt still had ~7% lower 
system cost than the others in this case (see iteration 4 in Fig. 2). We 
found that a substantial difference in system cost formulation involves 
the treatment of the time value of money and discount rates. When 
determining present value, it is possible to apply a discount rate at any 
point in a model year. Meanwhile, some models ignore the time value of 
money when computing dispatch. By re-parameterizing energyRt to 
apply the discount rate at the end of the simulation year, system costs 
converged with the other models in all cases (Figs. 1 and 2). This yielded 
the final model outputs, iteration 4, shown in Fig. 1B. 

Fig. 3. The same representative ten-hour time series from each model showing the hourly dispatch by each technology under case S3. The positive values (solar and 
storage discharging) show electricity generated to meet demand, while the negative values (storage charging) show excess electricity generation used to charge the 
battery. The black dashed line marks demand and appears flat due to the wide y-axis range but is in fact not constant. As can be seen, each model meets 100% of 
demand at all hours (a requirement specified in the case) but displays a different charging and discharging pattern due to the zero variable costs of solar and storage, 
which creates non-uniqueness in the optimization decision space. Note that curtailment of solar occurs across all of the models in these hours but is not explicitly 
shown in this figure. 

2 Specification of initial and final battery storage amounts can have a greater 
influence on results for cases with small amounts of simulation time or for 
models that use representative time slices. 
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3.3. Remaining model differences 

Even with the adjustments discussed above, differences persisted in 
the computed system costs, built capacities, and hourly dispatch profiles 
of the four models in all five cases, indicating that underlying model 
differences remained. There are numerous possible explanations for 
such deviations; here we described some based on our intercomparison 
process and modeling experience. 

First, differences can persist if there is not a unique solution in the 
decision space to the cost minimization problem. This can occur, for 
instance, when the variable costs of generation for wind, solar, and 
battery are zero as they were in this analysis. The models are indifferent 
to variations in the precise timing of storage dispatch as long as they do 
not affect the dispatch cost (and thus the objective function), so there 
appears to be some randomness to when charge and discharge occurs. 
Fig. 3 shows an example of this by presenting the hourly dispatch profile 
from case S3 for a randomly selected 10-hour segment in our simulation 
year. In all four models, solar generation (yellow block) was used to 
meet 100% of demand (black dashed line) at the onset of the 10 h. Excess 
solar in these hours was used to charge the battery (red block), which in 
turn was dispatched in the later hours (green block) to meet demand 
when solar generation was not available (i.e., evening hours). However, 
the models differed as to when and for how many hours charging 
occurred, as long as battery capacity was sufficient to meet demand 
requirements throughout the night. If we were to take snapshots of other 
10-hour periods, we would see distinct battery charging and discharge 
behavior among other models. This is important to note because 
sometimes researchers attempt to draw operational lessons from ca-
pacity expansion models, but this example indicates that this use-case 
must be approached with great care in this class of models (particu-
larly if one is interested in storage operation). 

Second, the precision with which model parameters are specified can 
create differences in model outputs. This class of models often shows 
“knife-edge” results, where an incremental shift in costs makes one 
technology cheaper than another, resulting in a step-function change in 
capacities in the least cost system. We saw a dramatic manifestation of 
this in case S2, where costs were intentionally selected to be near these 
edges. We ran case S2 in MEM with three levels of rounding precision: 
using cost input parameters with float precision, rounded to four deci-
mal places, and rounded to two decimal places. We found that total 
system costs were $201.9 billion, $202.4 billion, and $210 billion, 
respectively. This is a 4% increase in total system cost (in dollars) when 
we move from using costs (in $/kW and $/kWh) with float precision to 
two decimal places of rounding. Meanwhile, in this knife-edge case, 350 
GW of nuclear was built when inputs had float precision but no nuclear 
was built when inputs were rounded to two decimal places. Such wide 
variation has potentially major implications for the reliability of model- 
based planning without sufficient sensitivity analysis. 

Relatedly, as with all linear programs, a wide range of matrix coef-
ficient values or very small values can create numerical issues and, 
potentially, an infeasible model [35]. In this study, no such issues 
occurred, and all research groups used the same model structure. 
Consistent parameter scaling across models can help future model 
intercomparison efforts avoid such issues. 

One difference that we identified among our models that did not 
have a large effect on our results was the formulation of the objective 
function. Even though all of our models are consistent with Eq. (1), each 
applied a different method for considering the “end effects” that occur 
because new capacity costs incurred towards the end of a model time 
horizon can skew results. One way to formulate this is to explicitly 
include salvage costs in the objective function, while another is to 
truncate annual capital payments extending beyond the model time 
horizon. These different objective function formulations involve distinct 
assumptions that can cause diverging results but can be difficult to 
calibrate between models without reformulating the models themselves. 
Therefore, we did not harmonize the models to address these 

differences. In Fig. 1, divergences in the objective function formulation 
are most evident in the wind only (S4) and nuclear only (S5) cases, 
where the four models build the same amount of wind or nuclear ca-
pacity, respectively, but produce different total system costs. However, 
even without calibrating our models to account for this, the differences 
in system costs were less than 1% in these two particular cases, so the 
impacts of the end effects formulation do not appear to have substan-
tially impacted our results. This might be a more important consider-
ation for models that optimize with representative time slices, rather 
than hourly dispatch, because boundary conditions play a more 
important role in determining the optimal solution. 

3.4. Qualitative assessment of the value of benchmarks and unit testing 
standards in capacity expansion modeling 

Previous work has demonstrated that technology costs and model 
structures can both play important roles in determining capacity 
expansion model outcomes [1,2]. However, the parametric and struc-
tural uncertainties in models are difficult to disentangle because it is 
often impractical to fully harmonize both model inputs and structures in 
intercomparison efforts. Based on the conclusions of previous work, a 
hypothesis going into this study was that remaining outcome differences 
in existing intercomparison efforts (such as those by [1] and [2]) 
emerged primarily from the complex – and thereby difficult to harmo-
nize – structures of the models being studied. We assumed that parsi-
monious models, where most model components are “turned off”, with 
aligned input costs and technical specifications would yield nearly 
identical results. We found that, while technology costs no doubt play a 
central role when optimizing a least cost system, technology-specific 
structural assumptions and details regarding how models are initial-
ized can substantively influence results. More importantly, we found 
that having a systematic process for model testing allowed us to pinpoint 
differences between models that we either did not previously recognize 
or did not expect to have substantial impact on results. Differences in 
model outputs thus cannot be blamed on a nebulous “complexity.” As 
such, we emphasize the value of coordinated benchmarking and unit 
testing efforts among the capacity expansion modeling community for 
building confidence in model results, substantiating specific modeling 
choices, reporting uncertainties, and identifying areas for further 
research and development. 

While it is impractical to expect last-digit agreement among energy 
system optimizations conducted using different models, similarity in 
quantitative outputs and qualitative agreement among models is 
essential to their reliability as planning tools. Confidence in model re-
sults can be increased through analysis of discrepancies between 
models. Given the proliferation of such models and the diversity of their 
developers and applications, a systematic approach for capacity 
expansion models would be necessary to build the same confidence 
achieved across a wide diversity of climate models [36] and building 
energy models [37]. A systematic approach includes common input 
datasets for verification and benchmarking as well as standard processes 
to step through comparison efforts. 

Relatedly, the results of energy system models are typically reported 
without any associated uncertainties. For results to be more useful, the 
energy modeling community should identify and be transparent about 
the parametric and structural contributors to uncertainties in model 
results. In cases where uncertainties are hard to quantify, sensitivity 
analyses that illustrate the dependencies of model results on reasonable 
variation of input parameters could be useful for estimating parametric 
uncertainties. 

It is important to point out that differences in model outputs – if 
adequately documented and explained – can be an asset to the broader 
energy community because they reflect real differences of opinion be-
tween model users about cost projections, technological assumptions, 
and more. Diverging model results should not invalidate the models. 
However, a coordinated benchmarking effort could help researchers 
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identify a model’s coding errors and its non-erroneous fundamental 
differences from other models, as well as areas for further research and 
development. 

The cases and input datasets we introduce here can serve as the 
foundation for further development of a library of official tests to be 
used for benchmarking capacity expansion and macro-energy models. 
We will archive these test cases and our benchmark results in a public 
repository for broader accessibility and to provide opportunities for 
further development by the energy modeling community. These five 
cases are good starting points for further development because they 
apply limited assumptions to a simple system topology, and allow for (1) 
small computation times (on the order of seconds for our four simple 
models), (2) easy identification of input-related and non-input-related 
model discrepancies, and (3) the potential to be expanded both in 
terms of the number of simple cases and the complexity of existing cases 
for testing more assumptions. For instance, our cases are built on 
greenfield sites and simulated over only one year, so do not explore 
differences in retirement capacity. This shortcoming can be readily 
addressed with a case that uses a longer time period and a case that 
includes existing capacity in order to test the treatment of new and 
existing capacity. Other extensions to the unit tests presented here could 
include additional electricity generation technologies, multiple nodes 
with transmission infrastructure, reserve planning, policy-based targets, 
technologies in other sectors, and other meteorological and hydrological 
year profiles. 

4. Conclusion 

Here, we presented the first intercomparison effort of capacity 
expansion models that removes all parametric uncertainty to focus only 
on structural differences. We showed how a systematic process for 
eliminating parametric uncertainty and reducing structural discrep-
ancies can identify structural differences in four electric sector capacity 
expansion models with the same mathematical definition. By system-
atically comparing our four models using a set of five test cases and an 
iterative process involving communication among members from all 
four model groups, we were able to identify differences that we had not 
previously recognized would substantially impact our results. The spe-
cific structural differences we pinpointed through just four iterations of 
model harmonization that are likely applicable to other capacity 
expansion models include:  

1. The specification of various technologies as baseload or load 
following generation.  

2. Constraints on the state-of-charge for storage at the beginning and 
end of the modeled period.  

3. The application of battery roundtrip efficiency on energy entering vs. 
exiting the battery.  

4. The treatment of discount rates and time value of money.  
5. The non-unique decision space in a cost optimization problem that 

can be created with zero variable cost assumptions.  
6. The formulation of model “end effects”.  
7. The digit precision of the input parameters. 

More broadly, we can conclude that model differences cannot be 
imprecisely attributed to an undefined “complexity.” Because this work 
focuses on the intercomparison of highly simplified versions of four 
different models, it presents only a small sample of differences that can 

exist between full-scale capacity expansion models. The differences at 
each iteration and the active participation of model group members in 
resolving those differences only highlight the potential for significant 
differences among the more complex model formulations common in the 
research literature and planning studies. While more complex models 
will be undoubtedly more difficult to benchmark, we argue that doing so 
is important for a range of reasons discussed in this paper, including 
building model confidence and substantiating specific modeling choices. 
Model developers can tackle this formidable task by starting with unit 
tests that divide full model testing into smaller components. The simple 
cases and datasets presented in this study can be used as the foundation 
for development of additional tests to assess greater complexity. 

It should be noted that while the results of the models studied here 
differed in detail, all of the models agreed on the same ranking of sce-
narios with respect to cost, with Wind Only (S4) as the highest cost, 
followed by Solar and Storage Only (S3), then Nuclear Only (S5), then 
Current Costs (S1), and Hypothetical Costs (S2) being the lowest cost. 
This gives us a sense of the resolution of conclusions that can be drawn 
from individual models without needing to worry about model details. 

Consistency among models allows for more productive collaboration 
between macro-energy modelers and the broader energy modeling 
community, as well as the possibility of developing modules that can be 
incorporated into different models. As benchmarking and intercom-
parison efforts increase and we gain more understanding of the differ-
ences among models and why these differences occur, we can more 
effectively collaborate with and integrate our analyses with unit 
commitment, power flow, and integrated assessment models. This type 
of community-wide collaboration would enhance the existing work of 
many researchers who have been investigating linkages among capacity 
expansion models, unit commitment models, power flow models, inte-
grated assessment models, and more. Integration of different types of 
energy models can help us to better represent the energy system as a 
whole and identify potential future development paths. In addition, 
collaboration within the modeling community could provide trans-
parency regarding the energy transition and energy challenges, for 
policymakers and other stakeholders. 
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Appendix A 

See Tables A1, B1 and B2. 
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Table A1 
Cost and technology input values used to benchmark the four models.   

Solar Wind Natural Gas 
Combined 
Cycle 

Nuclear Battery 

Cases S1, S3, S4, and S5 

Capital Cost ($/kW, 
or $/kWh marked 
with asterisk) 

1851 1657 982 5946 261* 

Capital Recover 
Factor (%/year) 

8.06 8.06 9.44 7.50 14.24 

Fixed O&M Cost 
($/kW, or $/kWh 
marked with 
asterisk) 

22.02 47.47 11.11 101.28 0* 

Variable O&M Cost 
($/kWh) 

0 0 0.00354 0.00232 0 

Fuel Cost ($/kWh) 0 0 0.0191 0.0075 – 
Conversion Efficiency 

(%) 
– – 54 33 – 

Charging Efficiency 
(%) 

– – – – 90 

Decay Rate (fraction 
per hour) 

– – – – 1.14 ×
10− 6 

Charging Time 
(hours) 

– – – – 6.008 

Project Life (years) 30 30 20 40 10 
Discount Rate (% per 

year) 
7 7 7 7 7 

Case S2 

Capital Cost ($/kW, 
or $/kWh marked 
with asterisk) 

788 1095 982 1027 26 

Capital Recover 
Factor (%/year) 

8.06 8.06 9.44 7.50 14.24 

Fixed O&M Cost 
($/kW, or $/kWh 
marked with 
asterisk) 

22.02 47.47 11.11 101.28 0 

Variable O&M Cost 
($/kWh) 

0 0 0.00354 0.00232 0 

Fuel Cost ($/kWh) 0 0 0.0191 0.0075 – 
Conversion Efficiency 

(%) 
– – – 33 – 

Charging Efficiency 
(%) 

– – – – 90 

Decay Rate (fraction 
per hour) 

– – – – 1.14 ×
10− 6 

Charging Time 
(hours) 

– – – – 6.008 

Project Life (years) 30 30 20 40 10 
Discount Rate (% per 

year) 
7 7 7 7 7  
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