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A B S T R A C T   

Electrification of space heating in buildings, currently dominated by on-site fossil fuel use, will be an essential 
element of decarbonization. Some electrification of heating is already underway, and although state-by-state 
adoption is highly heterogeneous, the associated impact on the grid is already being felt. The same has been 
true for air-conditioning except adoption levels are generally higher. As we expect rapid adoption of electrifi
cation, a model that can seamlessly disaggregate the existing electric load into that for heating, cooling and non- 
thermal uses is essential. We develop a model that captures the building thermal response to quantities such as 
building floor areas that change over years and weather that changes through the day and through the year. 
Complexity of occupancy, thermostat settings, diversity in building envelopes or technologies deployed are not 
explicitly represented, but their effects are captured as hourly changes in the response. The model can then be 
used to estimate the non-thermal dependent loads. Once such a disaggregation is available, it can be used to 
estimate new load profiles as changes in floor area or electrified loads or weather occurrences. 

The model is validated against actual hourly utility loads by re-aggregating the simulated hourly loads for a 
single year for all load zones in NYISO (boundary aligns with New York), ERCOT (covering most of Texas), 
CAISO (covering most of California) and some other individual balancing authorities of California (BANC, TIDC, 
IID, LADWP and WALC) with mean absolute percentage errors (MAPEs) across all between 3.0% and 6.0%. The 
obtained model parameters are further tested by backcasting hourly load for the past 10-year period without 
degradation in errors, which suggest the model is promising for forecasting in the long-term. While our results 
bridge the gap between building level energy simulation and building stock energy prediction, all source data for 
the present study are extracted from open-access datasets. The model is available as an open-source tool that can 
be easily applied to any spatial resolution at any geographical locations, as long as load profiles and building 
census data are available.   

1. Introduction 

The US building sector is responsible for 40% of the country’s energy 
consumption [1], and 30% of GHG emissions [2]. Within this sector, 
nearly half of site energy is for space heating, cooling and ventilation [3, 
4]. In order to comply with pressing decarbonization goals, space 
heating must be electrified at a much faster rate and inefficient space 
cooling devices need to be upgraded as well [5,6]. This will significantly 
change the current shape of load and thus create challenges on resources 
allocation for power grids [7,8]. Thus, governments, associated 

stakeholders and power utilities need to better understand not only the 
current amount of energy consumed by each end-use in building sector, 
but also what future effects electrification and energy efficiency mea
sures might have [9]. Understanding the relationship between long-term 
electricity load growth (and the evolution of the load profiles) and 
weather, electrification and building floor areas is therefore essential for 
utilities and independent system operators (ISO). Such relationships 
allow utilities to develop policies for future grid planning and allow for 
the co-design of incentives that encourage customers to reduce their site 
fossil-fuel use and utility-side incentives for the distribution grid capa
bilities [10,11]. 
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Two distinct approaches are typically used to estimate grid loads: 
top-down or bottom-up. Bottom-up models typically take advantage of 
the accuracy of physics-based energy dynamic models of individual 
buildings, and then aggregate those simulated energy consumption re
sults to higher spatial regimes [12–15]. These bottom-up approaches 
estimate building energy consumption based on building construction 
layouts, envelope specifications and local weather conditions [16–18]. 
The predictions from these studies must rely on establishing a repre
sentative set of building diversity and calibrating models on a 
case-by-case basis to the building stock in a region. Substantial efforts 
are therefore required to guarantee the repeatability when applying the 
models to different geographical scales and locations. One of the most 
representative works is the demand side grid model that NREL devel
oped, in which around 900,000 typical buildings were simulated then 
weighted to represent the entire building stock of the US [19]. Never
theless, the hourly accuracy of the aggregated load at state level is re
ported to be 20%. 

A top-down approach, on the other hand, predicts aggregated 
building stock energy consumption over a well-defined geographical 
area, attempting to capture variations in weather, energy prices and 
building stock throughout the given area. The areas we consider are 

balancing authorities (BA) and load zones. As the most studied meteo
rological factor, ambient temperature dependency of electricity load is 
often characterized by a ‘U’ or ‘V’ shape. Hourly electricity demand 
generally increases as temperatures rise beyond some threshold, or drop 
below a threshold, since some heating is electric despite most of the 
contiguous US still primarily heating with fossil fuels. Thus, many have 
proposed a V-shaped segmented regression model to explain the rela
tionship between energy demand and temperature [20,21]. Subse
quently, some studies have proposed to have a comfort temperature 
zone between two thresholds, where electricity demand has no 
temperature-dependence [22–25]. This temperature-independence 
assumption is unlikely to capture effects aggregated across buildings 
with different heating and cooling behavior, but it correctly identifies a 
transition between heating- and cooling-dominated loads. 

Regression models also have the advantage of isolating effects of 
different variables with coefficients that reflect load response to each 
variable and allow one to study perturbation of those variables due to 
anticipated system changes. While temperature is a primary factor that 
drives electricity consumption [26], building stock energy demand re
sponds to countless other factors. For example, humidity, solar radia
tion, wind speed, building envelope thermal efficiency, diurnal 

Nomenclature 

Az total building floor area of BA z 
DFz,t darkness fraction of BA z at hour t 
Ez,t hourly grid load for BA z at hour t 

Ẽ
base
z,t model estimated temperature-neutral ‘base’ electricity 

load of BA z at hour t 

Ẽ
clg
z,t model estimated cooling electricity load of BA z at hour t 

Ẽ
htg
z,t model estimated heating electricity load of BA z at hour t 

Ihtg
z,dh(t) intercept of electricity heating regression model 

Iclg
z,dh(t) intercept of electricity cooling regression model 

phtg
z fraction of floor area with electric heating in BA z 

pclg
z fraction of floor area with electric cooling in BA z 

Shtg
z,dh(t) temperature-dependent heating electricity response 

coefficient for BA z at hour of day t 
Sdf

z,dh(t) darkness fraction-dependent heating electricity response 
coefficient for BA z at hour of day t 

Sclg,db
z,dh(t) temperature-dependent cooling electricity response 

coefficient for BA z at hour of day t 
Sclg,wb.diff

z,dh(t) modified wet bulb temperature-dependent cooling 
electricity response coefficient for BA z at hour of day t 

shtg
z,dh(t) specific temperature-dependent heating electricity 

response coefficient for unit building floor area using 
electric heating in BA z at hour of day t 

sclg
z,dh(t) specific temperature-dependent cooling electricity 

response coefficient for unit building floor area using 
electric cooling in BA z at hour of day t 

Tz,t temperature of BA z at hour t 
Twb

z,t wet bulb temperature of BA z at hour t 

Twb.diff
z,t modified wet bulb temperature of BA z at hour t 

Tbph,z,dh(t) breakpoint temperature of electricity heating 
Tbpc,z,dh(t) breakpoint temperature of electricity cooling 

Abbreviation 
NYIS-ZONA New York Independent System Operator (NYIS), West 
NYIS-ZONB New York Independent System Operator (NYIS), 

Genesee 

NYIS-ZONC New York Independent System Operator (NYIS), 
Central 

NYIS-ZOND New York Independent System Operator (NYIS), North 
NYIS-ZONE New York Independent System Operator (NYIS), 

Mohawk Valley 
NYIS-ZONF New York Independent System Operator (NYIS), Capital 
NYIS-ZONG New York Independent System Operator (NYIS), 

Hudson Valley 
NYIS-ZONH New York Independent System Operator (NYIS), 

Millwood 
NYIS-ZONI New York Independent System Operator (NYIS), 

Dunwoodie 
NYIS-ZONJ New York Independent System Operator (NYIS), New 

York City 
NYIS-ZONK New York Independent System Operator (NYIS), Long 

Island 
ERCO-C: Electric Reliability Council of Texas, Inc. (ERCO), Coast 
ERCO-E: Electric Reliability Council of Texas, Inc. (ERCO), East 
ERCO-FW Electric Reliability Council of Texas, Inc. (ERCO), Far 

West 
ERCO-N: Electric Reliability Council of Texas, Inc. (ERCO), North 
ERCO-NC Electric Reliability Council of Texas, Inc. (ERCO), North 

Central 
ERCO-S: Electric Reliability Council of Texas, Inc. (ERCO), South 
ERCO-SC Electric Reliability Council of Texas, Inc. (ERCO), South 

Central 
ERCO-W: Electric Reliability Council of Texas, Inc. (ERCO), West 
CISO-PGAE California Independent System Operator (CISO), Pacific 

Gas and Electric 
CISO-SCE California Independent System Operator (CISO), 

Southern California Edison 
CISO-SDGE California Independent System Operator (CISO), San 

Diego Gas and Electric 
CISO-VEA California Independent System Operator (CISO), Valley 

Electric Association 
IID Imperial Irrigation District 
WALC Western Area Power Administration - Desert Southwest 

Region 
LADWP Los Angeles Department of Water and Power 
TIDC Turlock Irrigation District 
BANC Balancing Authority of Northern California  
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occupancy and internal load patterns are commonly studied [27–30]. 
However, multiple linear regression (MLR) models that takes all of these 
predictors typically have multicollinearity problems raised by correlated 
predictors [26,29]. Hence some studies resort to sensitivity analysis 
[31]. The results of those studies show that the influence of these vari
ables on electricity load varies with locations. For example, humidity 
has greater impact on space cooling energy consumption in hot and 
humid climates [32]. While solar radiation has a larger impact on 
building loads for places with a dry and high solar radiation climate 
[33]. Socioeconomic indicators can also impact certain countries and 
certain historic periods [34]. Our study utilizes two new variables that 
are built upon some of the well-studied factors, and are less 
location-wise sensitive for regression models. 

One of the drawbacks of top-down studies is that they have limited 
ability to forecast future loads if the prediction horizon involves sig
nificant changes from status quo (e.g. high growth in building floor area 
and electrification) [35]. Predicting load growth under such energy 
supply-demand scenarios becomes questionable except for the 
business-as-usual (BAU) case [9,36]. Without validated disaggregation 
that is locally specific to building stock characteristics, the ability to 
estimate load profile changes over a decadal time horizon is not evalu
ated in existing literature. This is even more important when building 
stock varies across climatically diverse geographies. With the increased 
availability of high-quality meteorological observation datasets, 
high-resolution grid monitoring, and household stock characteristics at 
census tract level that are published for the entire US, a building energy 
disaggregation approach is inevitably attractive for understanding load 
sub-components and subsequently end-use demand forecasting. Such an 
approach should be applicable to a range of utility or balancing area 
footprints with acceptable error margins. 

Other data-driven methods have been adopted as well and shown 
promising results. For example, classic time-series models [37]; machine 
learning based models like support vector machine (SVM) [38], neural 
networks [28,39], genetic algorithms [40]; and semi- or non-parametric 
methods like smoothing splines [41] and fuzzy [42] models. However, 
challenges exist for some of such models in either interpretability, 
over-fitting or repeatability for various locations. 

Most recently, top-down and bottom-up methods have begun to 
merge into hybrid methods that are meant to analyze the energy per
formance of neighborhoods or cities [9]. However, research gaps be
tween the two approaches arise from differences in spatial scale or 
temporal resolution or attempts at providing physical interpretation to 
results. Consequently, these results inherently differ in spatial, temporal 
scale and the model framework, making them impossible to compare 
and cross validate. 

In an attempt to bridge these gaps, the present study introduces a 
segmented multiple regression model to study balancing authority (BA) 
and sub-BA level electric loads’ dependencies on ambient temperature, 
time-of-day, weekday/weekend, wet-bulb temperature and the presence 
of daylight with hourly resolution. The methodology is then applied to 
22 load zones of three representative BAs of the US – NYISO, ERCOT, 
CAISO, as well as 5 other BAs that operate parts of California’s power 
grid. The overall geographical area covered includes all of New York 
(NY), and the majorities of Texas (TX) and California (CA). The re- 
aggregation of the disaggregated results is then compared with the 
actual load every hour of the year, which exhibits high level of 
agreement. 

2. Methods 

2.1. General description 

The disaggregation of electricity usage for heating and cooling from 
other electrical loads is performed for a BA or a load zone where hourly 
electrical load data are available. There are three different temperature 
ranges considered. In the temperature range below Tbpc (as shown in 

Fig. 1), we identify electric loads that increase with decreasing tem
peratures as heating loads, and loads that increase with temperatures in 
the range above Tbph, as cooling loads. The temperature range in be
tween Tbpc and Tbph is referred to as the transition zone, where some floor 
area is presumably heated, some cooled and some neither heated nor 
cooled. 

In the heating and cooling dominated ranges, we assume a linear 
dependence of load on temperature and fit a least-square estimator to 
determine associated temperature-dependent heating and cooling 
response intensity coefficients. The temperature-dependent load usage 
at the intermediate ‘transition zone’ is deterministically estimated as the 
sum of the linear extrapolated heating load and the extrapolated cooling 
load by a second-order polynomial function. In addition to hourly 
temperatures, we also consider effects of humidity on cooling by using 
the deviation of wet bulb temperature (WBT) from the mean DBT-WBT 
relationship and the time fractional presence of daylight for each hour. 
The intervals in Fig. 1 is intended to show the range of load prediction 
when considering these two variables. Correlations between loads and 
each predictor variables for the case study regions are shown in 
Tables S2–S5. 

The temperature-dependent electricity response coefficients are ob
tained at each hour of the day (day-hour), with separate coefficients for 
weekdays (strictly workdays) and weekends (strictly includes holidays), 
resulting in 48 coefficients for each load zone, and in units of energy 
each hour per unit temperature difference from the corresponding 
threshold temperature. These coefficients are then normalized by 
building floor area that is equipped with electrical appliances specific to 
either heating or cooling. This permits comparison of the results across 
individual regions in terms of electricity usage and forecasting load 
growth over long periods of time. We obtain building stock floor area 
information from four open access datasets – Hazus General Building 
Stock (GBS) [43], American Community Survey (ACS) 5-year estimates 
[44], Residential Energy Consumption Survey (RECS) [3] and Com
mercial Buildings Energy Consumption Survey (CBECS) [4]. 

We apply the method described by Waite and Modi [7] and syn
thesize the above datasets to estimate the total residential and com
mercial building floor area in the region and the fractions of floor area 
that are heated or cooled by electricity. A flow chart of data collection 
and usages in modelling process is shown in Fig. 2, while additional 
details are presented in supplementary file. 

2.2. Mathematical formulation 

For each one of the 24 h on a weekday or weekend day throughout 

Fig. 1. Scheme plot of segmented regression model on hourly BA load and 
temperature. 
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the year, a segmented linear regression model is fitted to estimate 
heating electricity response for all hours with temperature lower than 
the threshold temperature Tbpc (Eq. (1)) and cooling electricity response 
for all hours with temperature higher than the breakpoint temperature 
Tbph (Eq. (2)). To determine ‘base’ load, the load that would be presented 
in the absence of any heating or cooling loads, the obtained heating 
response is linearly extrapolated to the heating breakpoint temperature 
Tbph. This process was found to assure a consistent temperature-neutral 
‘base’ load for both the heating and cooling regression, while not 
altering the buildings’ thermal response to weather conditions that are 
extracted from the data. We initially set Tbpc to 10 ◦C and Tbph to 18.3 ◦C 
and allow these two threshold temperatures to self-adjust up and down 
for locations with extremely warm or cold climates to ensure an 
adequate number of data points. Existing literature has shown that 
warmer climates tend to have higher breakpoint temperature for the 
best model fitting [45]. 

Ez,t = Ihtg
z,dh(t) − Shtg

z,dh(t)Tz,t + Sdf
z,dh(t)DFz,t, if Tz,t < Tbpc,z,dh(t) (1)  

Ez,t − Ihtg
z,dh(t) + Shtg

z,dh(t)Tbph,z,dh(t) − Sdf
z,dh(t)DFz,t

= Iclg
z,dh(t) − Sclg,db

z,dh(t)Tz,t + Sclg,wb.diff
z,dh(t) Twb.diff

z,t , if Tz,t > Tbph,z,dh(t) (2)  

Where, Ez,t is the electricity load of load zone (balancing area), z, at time 
step, t. Ihtg

z,dh(t) and Iclg
z,dh(t) are intercepts of heating and cooling regression 

models. Shtg
z,dh(t) and Sclg,db

z,dh(t) are the temperature-dependent heating elec
tricity response coefficient and cooling electricity response coefficient, 
respectively. Both are in units of MW/

oC. dh(t) denotes the day-hour on 
either a weekday or weekend day (for 48 total day-hours). Tz,t is the dry 
bulb temperature. The model takes two more variables other than 
ambient temperature to improve accuracy – darkness fraction (DFz,t) and 
modified wet bulb temperature (Twb.diff

z,t ). 
Prior studies have established that the electricity consumption at 

clock times in the morning and late afternoon is affected by whether that 

those hours have light and hence solar gain (e.g. in the summer) or not 
(e.g. in the winter) [46,47]. A recent study found the presence of sun
light can influence grid load by up to 5% for hours around sunrise in the 
morning and 15% for hours around sunset in the evening [48]. To 
identify lighting load in those hours from heating load, the darkness 
fraction (DF) time series is simulated for each load zone to quantify the 
temporal ratio of daylight presences for each hour of a year. Sdf

z,dh(t) is the 
assumed linear correlation between darkness fraction and grid load. 

Wet-bulb temperature (WBT) affects latent cooling load, particularly 
during humid summer conditions [49]. In this study, a baseline of WBT 
is established first by fitting hourly WBT with dry-bulb temperature with 
a second order polynomial function (Eq. (4)). This provides a dry bulb 
temperature-dependent performance along the mean DBT-WBT rela
tionship. The model then considers the effect of the deviation of the WBT 
from this mean-line behavior (DWBT), Twb.diff

z,t (Eq. (3)), which, like other 
variables in the regression, is assumed to have a linear relationship with 
grid load. Sclg,wb.diff

z,dh(t) is the corresponding model coefficient and has the 
unit of MW/

oC. In this way, WBT-dependent energy usage is established 
as a deviation from the mean DBT-WBT relationship, which allows for 
robustness against outlier WBTs, easy model interpretation and the 
extraction of a single dominant temperature-dependent cooling 
behavior. 

Twb.diff
z,t =Twb

z,t − wbfunc
(
Tz,t

)
(3)  

Where wbfunc(Tz,t) is assumed to be the least square estimator of a 
polynomial function of DBT as shown in Eq. (4) below. The parameters 
az, bz, cz in Eq. (4) are obtained from such a fit to hourly dry bulb 
temperature and wet bulb temperature. 

wbfunc
(
Tz,t

)
= az

(
Tz,t

)2
+ bzTz,t + cz,Tz,t >Tbph (4) 

The heating coefficients Shtg
z,dh(t) and cooling coefficients Sclg,db

z,dh(t) that are 
estimated from the above regression model are then normalized by total 
floor area that is heated or cooled by electricity within the load zone 

Fig. 2. Flow chart of modelling data processing and usages in modeling process.  
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boundary to obtain the response of building electric loads for thermal 
end uses to temperature per unit floor area shtg

z,dh(t) and sclg,db
z,dh(t) (Eq. (5)). 

These specific building thermal response intensities are in units of Btue/

(h • m2 •◦ C), which allows comparison between heating and cooling, 
and across geographical regions and energy sources. 

shtg
z,dh(t) =

Shtg
z,dh(t)

Azphtg
z
; sclg

z,dh(t) =
Sclg

z,dh(t)

Azpclg
z

(5)  

Where Az is the total building floor area of load zone z, phtg
elec,z and pclg

elec,z 

are the fractions of floor area with electric heating and cooling. 
Estimated hourly heating, cooling and ‘base’ load are then calculated 

from obtained coefficients as shown by Eqs. (6)–(8). While we do not 
explicitly fit for hours with temperature between Tbpc and Tbph, we 
calculate the temperature-dependent electricity usage in this range later 
by applying two deterministic diminishing behaviors to heating and 
cooling load. We assume heating load is decreasing linearly, whereas 
cooling load is decreasing quadratically as temperatures move away 
from respective breakpoint temperature in this range (Eq. (7)). Note that 
the “+” outside a bracket returns the value inside the bracket or zero, 
whichever is larger. 

Ẽ
htg
z,t = Shtg

z,dh(t)

(
Tbph,z,dh(t) − Tz,t

)+ (6)  

Ẽ
clg
z,t =

⎧
⎨

⎩

Iclg
z,dh(t) + Sclg,db

z,dh(t)Tz,t + Sclg,wb.diff
z,dh(t) Twb.diff

z,t , if Tz,t ≥ Tbph,z,dh(t)
(

Iclg
z,dh(t) + Sclg,db

z,dh(t)Tbph,z,dh(t) + Sclg,wb.diff
z,dh(t) Twb.diff

z,t

)
θ2, if Tz,t < Tbph,z,dh(t)

(7)  

where θ =
Tz,t − Tbpc,z,dh(t)

Tbph,z,dh(t) − Tbpc,z,dh(t)
. 

Ẽ
base
z,t = Ihtg

z,dh(t) − Shtg
z,dh(t)Tbph,z,dh(t) + Sdf

z,dh(t)DFz,t (8)  

3. Study areas 

We validate our approach for all load zones in three representative 
BAs – NYISO, ERCOT and CAISO (excluding CAISO-VEA which is 
entirely outside California), and five other BAs that operate some parts 
of the California grid – BANC, LADWP, IID, TIDC and WALC. The 
selected area covers all of New York (NY), and most of Texas (TX) and 
California (CA), while avoiding the complication raised by load zones 
that cross state boundaries. The modeled regions are shown in Fig. 3. For 
simplicity, we use “CAISO” in the following sections of this paper to refer 
to the studied area in CA, including the other balancing authorities, as 

shown in Fig. 3(c). With these studied load zone areas, our results cover 
4 out of 7 major climate zones in the contiguous US. The characteristics 
of the population weighted average temperature for load zones are 
shown in Table 1. 

For the consistency of meteorologically driven time series and energy 
consumption, and to ensure that the joint distribution over these time 
series is adequately characterized, building floor areas and electricity 
penetrations by end-use are interpolated to the year 2019, while loca
tional weather data and energy consumption profiles are retrieved for 
2019 data directly from ERA5 dataset [50] and EIA grid monitor [51] 
respectively. 

4. Model accuracy 

The modelling approach allows us to estimate the hourly electric 
heating, cooling and remaining load (here called the ‘base’ load) for all 
hours of the year for any load zones. This allows us to obtain a model- 
generated estimate of the hourly load of a load zone, and we compare 
that with the actual zonal demand. This is first carried out for each of the 
load zones for year 2019. Table 2 shows the mean absolute percentage 
error (MAPE) over 8760 annual hours and relative error in annual peak 
load for all zones under study. The model captures load variabilities 
within 6% of error for all load zones in NYISO and ERCOT. In CAISO, 
4%–7% error is typically measured. We notice a major source of un
certainty comes from particular zones that have low building floor area 
(see Table S1 for floor areas and fraction for each BA). This issue was 
also discussed in a recent NREL report [52]. 

Fig. 4 shows the fitting accuracy of daily peak time (with logit x-axis 
scale). For most of the load zones, the time errors between simulated and 
actual daily peak time of grid load are 0–2 h for most of the days during a 
year. Accurately capturing the daily peak load is beneficial to infra
structure capacity and operational planning. 

State aggregation of predicted hourly loads compared to actual are 
shown in Fig. 5. For most of the hours, prediction errors are within 20%, 
while the MAPEs of all three states fall within 4%. The model is espe
cially accurate for high demand periods, which is a desired feature, since 
predicting peak load is of great importance for power grid planning and 
operations [53]. Accurately predicting the peak load – and hourly load 
more generally – is also one of the necessary conditions to guarantee 
convincing result for any further studies on reducing buildings green
house gas emission that will be built upon this model. 

Hourly energy prediction breakdowns for peak demand days of both 
heating and cooling seasons are shown in Fig. 6 for each state. Results 
show that the hourly error rates of model prediction of peak load are 
generally within 6% in total load for both seasons. The model is also 

Fig. 3. BA and load zone maps of the three representative regions for this study. (a) NYISO, (b) ERCOT, and (c) CAISO (excluding CISO-VEA), BANC, LADWP, IID, 
TIDC, WALC operated area in California. 
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capable of capturing the bi-peak behavior of load in winter months for 
all of the three states. Seasonal average load prediction can be found in 
Fig. S1. 

The hourly predictions of our model are then compared to a short list 
of existing models that we reviewed. As shown in Table 3, our model is 
able to predict in high accuracy, and at the same time, without loss of 
generality and repeatability. All sources of data in this study are open 
access, which allows the model to be fully open-source. 

5. Building thermal response to temperature and long-term load 
forecasting 

5.1. Electric load response for temperature-dependent end use 

The disaggregated intensities of electric heating and cooling 
response to temperature are shown at a BA-level in Fig. 7. As discussed 
in Section 2 (Eqs. (1), (2) and (5)), all coefficients for temperature- 
dependent usages are normalized with building floor area that is heat
ed or cooled by electricity, providing us results in temperature and area 
normalized units of Btue/(h • m2 •◦ C) . Heating and cooling coefficients 
without taking DF and DWBT are also shown to illustrate the effect of 
these two supplementary features. For readability consideration, all 
coefficients have been averaged over weekdays and weekends. The 

Table 1 
Characteristics of load zone electricity loads and climate conditions.  

Load zone Annual average Coldest month Hottest month 

Average load (MW) Average DBT (oC) 99% coldest DBT (oC) Peak load (MW) Average DBT (oC) 99% hottest DBT (oC) Peak load (MW) 

NYIS-ZONA 1697 − 4.9 − 18.8 2192 22.4 28.7 2620 
NYIS-ZONB 1109 − 4.6 − 17.5 1603 22.5 29.5 1926 
NYIS-ZONC 1804 − 5.6 − 19.5 2711 22.5 29.8 2705 
NYIS-ZOND 550 − 9.7 − 24.1 774 21.8 29.9 608 
NYIS-ZONE 898 − 7.4 − 21.8 1418 22.0 29.5 1395 
NYIS-ZONF 1350 − 6.0 − 21.3 2065 23.2 31.4 2301 
NYIS-ZONG 1092 − 2.5 − 18.5 1617 24.3 33.0 2243 
NYIS-ZONH 321 − 1.4 − 16.8 533 25.1 33.6 659 
NYIS-ZONI 682 − 0.6 − 15.3 941 25.8 33.9 1392 
NYIS-ZONJ 5936 0.2 − 14.3 7755 26.2 34.2 10,802 
NYIS-ZONK 2345 0.9 − 12.8 3390 25.2 31.4 5437 
ERCO-C 12,354 11.8 0.8 14,157 29.6 36.6 21,256 
ERCO-E 1485 9.0 − 1.9 2131 30.2 37.7 2554 
ERCO-FW 3435 7.9 − 3.6 3555 30.9 41.0 4308 
ERCO-N 854 6.0 − 4.0 1168 29.8 38.0 1476 
ERCO-NC 13,819 7.6 − 1.9 19,501 30.4 37.6 25,494 
ERCO-S 3608 15.1 4.9 4726 31.4 38.0 6040 
ERCO-SC 6970 10.6 0.5 9198 30.9 38.3 12,785 
ERCO-W 1292 8.8 − 1.0 1701 31.3 39.3 2117 
CISO-PGAE 11,316 8.8 1.7 13,514 22.4 32.9 21,039 
CISO-SCE 11,371 9.6 2.4 13,265 24.1 32.0 20,934 
CISO-SDGE 2197 11.4 5.1 3035 21.9 28.3 3637 
IID 419 12.0 4.1 415 33.8 43.7 1067 
WALC 1087 9.9 1.3 1331 32.5 41.9 1919 
LADWP 3064 10.1 2.7 3851 23.8 32.3 5609 
TIDC 308 9.6 0.7 320 28.0 40.3 643 
BANC 1949 9.3 0.6 2288 26.1 39.6 4428  

Table 2 
Model prediction accuracy of all BAs that are under study. MAPE: mean absolute 
percentage error of predicted load of 8760 annual hours.  

BA MAPE Relative error 
for peak load 

BA MAPE Relative error 
for peak load 

NYIS- 
ZONA 

3.10% 3.05% ERCO-N 4.28% 2.37% 

NYIS- 
ZONB 

3.50% 5.62% ERCO- 
NC 

5.00% 0.59% 

NYIS- 
ZONC 

3.48% 2.02% ERCO-S 5.11% 4.89% 

NYIS- 
ZOND 

3.57% 1.83% ERCO-SC 4.84% 0.73% 

NYIS- 
ZONE 

5.57% 4.97% ERCO-W 3.77% 0.67% 

NYIS- 
ZONF 

4.97% 0.57% CISO- 
PGAE 

6.83% 1.43% 

NYIS- 
ZONG 

4.19% 1.13% CISO- 
SCE 

3.78% 4.29% 

NYIS- 
ZONH 

6.02% 0.18% CISO- 
SDGE 

5.99% 6.77% 

NYIS- 
ZONI 

3.82% 2.84% IID 5.30% 8.08% 

NYIS- 
ZONJ 

3.10% 2.86% WALC 10.9% 2.87% 

NYIS- 
ZONK 

4.47% 2.15% LADWP 4.00% 3.44% 

ERCO-C 3.74% 1.73% TIDC 4.67% 0.71% 
ERCO-E 4.52% 1.13% BANC 5.28% 5.21% 
ERCO- 

FW 
4.33% 2.93%     

Fig. 4. Error distribution for all BAs under study in predicting daily peak load 
time. X-axis is in logit scale. We assume a day has bi-peak load profile if the 
second highest load hour is not adjacent to peak hour. And If a day has two 
comparable peaks, the minimum period between actual peaks and the simu
lated peak is recorded. 

Y. Hu et al.                                                                                                                                                                                                                                       



Energy Strategy Reviews 49 (2023) 101175

7

confidence intervals are calculated by combining variances of the load 
zone regression models, while the propagation of uncertainty from 
source data and the synthesis of building floor area are not considered. 

Although the regression model obtains results for each hour inde
pendently of other hours of a day, the coefficients show a nearly 
continuous behavior. The normalized heating coefficients are generally 
higher than those for cooling, which indicates the presence of lower 
efficiency electric resistance heating compared to air-conditioning. The 
cooling values in ERCOT ranging from 2.4 to 3.3 Btue/(h • m2 •◦ C), 
higher than those for cooling in NYISO ranging from 1.7 to 2.6 Btue/

(h • m2 •◦ C). One explanation could be that building envelopes could be 
less efficient (e.g. not as well insulated and more air exchanges) in Texas. 
Or there might be a larger fraction of whole-house central cooling sys

tems in Texas as compared to places like New York with larger fraction 
of window units that are more likely to be turned off when the occupant 
is away. But it is difficult to speculate exactly why, since these responses 
rely on estimates of what floor area is cooled and when. Given the 
Numerous competing factors, a detailed qualitative analysis on this 
behavior is out of the scope of this study. 

Larger uncertainties are seen for electricity heating response esti
mators, especially for CAISO. One explanation is that California’s rela
tively warmer winter temperatures and the low electrification rate of 
space heating compared to space cooling. According to our review of the 
ACS, RECS and CEBCS datasets (see Table S1), air conditioner possession 
rates are uniformly high among the three BA areas, whereas the ratios of 
electric heated building floor area are small for CAISO and NYISO, 

Fig. 5. Model simulated load compared to actual hourly load for BAs. (a) NYISO, (b) ERCOT, (c) CAISO.  

Fig. 6. Simulated load breakdowns on the peak load day of heating and cooling season for BAs and comparison with actual load profile. (a1)-(a3) heating season 
peak load day profiles for NYISO, ERCOT and CAISO respectively. (b1)-(b3) cooling season peak load day profiles for NYISO, ERCOT and CAISO respectively. 
Population weighted hourly temperatures for that day are shown in the lower plot. 
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around 22% and 12% on average respectively. The warmer winters and 
the low utilization rate of electric heating make electricity heating 
response to temperature too weak to be confidently extracted from the 
grid load. However, because of the mild temperatures and low pene
tration of electric heating, this does not have a major effect on overall 
load prediction in CAISO. 

Both CAISO and ERCOT heating coefficients show daily patterns that 

roughly mirror those of the cooling coefficients. For example, the 
heating coefficients of ERCOT peaks in the early morning and at eve
ning, while the cooling dips during those periods, and vice versa. This 
might be explained by the larger solar gain and larger elevations in af
ternoon temperatures during winter months for the two BAs, which can 
be observed in Fig. 6. Another observation is that the daily average 
heating slope of ERCOT is 34% higher than cooling, while this number 

Table 3 
Comparison between our model and related models on modeling method and prediction accuracies.  

developer Modelling 
method 

Modeled region temporal 
framework 

Selected areas for 
comparison 

MAPE Relative error in peak 
load 

This study Top-down All BAs in NYISO, ERCOT and 
CAISO 

Hourly NYISO 2.9% 0.3% 
CAISO 3.3% 1.4% 
ERCOT 4.0% 0.7% 

NREL [19,54] Bottom-up County level – entire contiguous 
US 

Hourly NY 14.2% 1.1% 
CA 31.8% 30.5% 
TX 16.5% 10.3% 

Pineau P. O. et al. [55] Bottom-up New York state Hourly NY 5.8% 1.3% 
Sailor D. J., Vasireddy C 

[56]. 
Top-down Houston, Los Angles, Seattle Monthly Houston 7.6%  

Los Angles 17.8%  
Seattle 12.2%  

Tung N.X. et al. [57] Top-down Vietnam Hourly  ~5% a  

Wang Y. and Bielicki J. M 
[24]. 

Top-down 2 load zones in northeastern US Hourly  ~3.5%   

a A ’~’ before model error means the paper doesn’t explicitly show the errors, and the authors make a rough estimation based on the plots of the literature. 

Fig. 7. Hourly coefficients of electricity response to ambient temperature for (a) NYISO, (b) ERCOT, (c) CAISO. Coefficients are averaged by weekdays and 
weekends, weighted by the numbers of days that are weekdays and weekends. Error bars show confidence interval of the individual regression models. Propagation 
of uncertainty from source data are not included. 

Fig. 8. The effect of (a) DF and (b) DWBT on the disaggregated heating and cooling load on hour 18 in NYIS-ZONJ.  

Y. Hu et al.                                                                                                                                                                                                                                       



Energy Strategy Reviews 49 (2023) 101175

9

for NYISO is around 76%. This is in accordance with the fact that TX has 
installed more heat pumps than NY, where less than 1% of the overall 
households have heat pump installed [58]. NYISO heating slopes seem 
to be shaped after people’s activity schedules rather than the effect of 
daily temperature variation. 

5.2. The effect of darkness fraction and wet bulb temperature 

DF and DWBT (see Eq. (1) and (2) and Eq. (3) and (4) for the defi
nition of DWBT) have an impact on the disaggregation results of load, 
which can be seen from Fig. 8. Fig. 8(a) shows an example of the linear 
model of the heating-induced temperature range for 6pm (hour 18) on 
weekdays. The effect of the darkness fraction is intuitive in that winter’s 
artificial lighting is needed earlier than summer as daylight periods are 
shorter. Therefore, the extra nighttime illumination demand in winter 
must be disaggregated from the heating demand when fitting one 
regression model to the same hour for a whole year. Similarly, DWBT is 
an indicator of the amount of latent cooling load during humid summers, 
which is illustrated in Fig. 8(b). It’s straightforward to find that for hours 
with WBTs higher than the mean relationship between DBT and WBT (i. 
e. positive DWBT), the overall demands tend to be higher, and vice 
versa. Model improvement considering DF and WBT can be found in 
Supplementary Fig. S2. 

5.3. Potential for long-term load forecasting 

To evaluate if the model fitted to input data for a single year (2019) is 
capable of forecasting over a long-term period, the model is tested by 
simulating grid load for a past 10-year period, from 2010 to 2019. As the 
usage of HVAC systems and the pool of existing appliances has been 
generally unchanged over the past decades, the disaggregated heating 
and cooling loads are assumed to vary only with the change of building 
stock floor area and the fraction of space that is either cooled or heated 
by electricity. Thus, the prediction intakes annual weather condition 
records and the interpolated building floor area that consumes elec
tricity for heating or cooling for each year (Eqs. (6)–(8)). Load zone level 
prediction error can be found in Table 4. CAISO load data prior to 2019 
is not available to the authors, so it is not included. NYISO and ERCOT 
MAPEs and relative errors in peak load fall within 5% for any year in the 
decadal horizon, except one outlier. Although MAPE generally increases 
as the gap between the prediction year and the model-fitting year (2019) 
increases, this is a very promising result for the use of this model to 
maintain reasonable accuracy in predicting loads in future years. 

5.4. Robustness under extreme weather conditions 

The model shows robust results for predicting demand under 

extreme weather conditions. Fig. 9 shows hourly load prediction 
breakdowns and temperatures for one of the hottest or coldest two-day 
windows for each BA in the past 10 years. Results show good alignment 
between the estimated grid loads from the model and utility records, 
with hourly error rate under 5% for most of the hours shown. Success
fully predicting demand under extraordinary conditions is vital for 
utilities to plan for a stable, resilient and robust power system. 

6. Conclusion 

In this study, we develop an open-source segmented multiple 
regression model to disaggregate building thermal response from elec
tric load data with high temporal resolution over utility load-zone scale 
geographic areas. In addition to ambient temperature, time of day, 
weekend or weekday, and conditioned floor area, model fit is improved 
using the deviation of WBT from a mean DWT-WBT relationship and the 
presence of daylight. We apply our model to 27 load zones or BAs across 
three U.S. states, each of which has unique climatic and load charac
teristics. We validate model accuracy by comparing modeled hourly 
energy usages to publicly available datasets at multiple spatial aggre
gation levels. 

Results show that our model is generally able to predict hourly grid 
load at BA aggregation within 5% MAPE, 1.5% relative error in peak 
load, and 2-h uncertainty in time at which the daily peak occurs. The 
maximum reaggregated load error for any hour remains under 20% for 
all three BAs. By comparing with existing literature, we show that the 
model’s hourly load prediction accuracy and repeatability is as good as, 
if not better than, the most state-of-the-art models of its kind. These 
results hold across the study regions of NYISO, CAISO and ERCOT. 

The model, along with coefficients obtained from a single year’s 
data, is applied to backcast ten years of historical loads, using historical 
weather data, and a linear interpolation that applied to electrically 
conditioned building floor area. The comparison between actual hourly 
loads and estimates is found to be good. This validates the underlying 
assumption that the normalized heating and cooling coefficients remain 
invariant, at least in the short term. This suggests that the model can be 
used to predict loads into the future with acceptable error even as floor 
area evolves and the adoption of heating electrification accelerates. 
Thus, the model can be applied to estimate load profiles under various 
growth scenarios and evaluate demand side measures to reduce distri
bution grid investments and improve grid reliability. Such study is 
especially important for future grids with high penetration of intermit
tent resources. 

With the model validated and tested, the daily profiles of dis
aggregated heating and cooling coefficients are presented. The electric 
cooling response is 2–4 Btue/(h • m2 •◦ C) in most load zones. For ERCOT 
and NYISO, the electric heating responses range from 3 to 5 
Btue/(h • m2 •◦ C). The heating coefficients of CAISO have higher un
certainty; however, the total reaggregated load error remains low 
because of low heating demand and low penetration of electric heating 
in CAISO. Therefore, our model returns reliable load prediction, except 
when one is specifically interested in the disaggregated heating demand 
in moderate climates with minimal electric heating penetration. With 
these results available, as well as the building stock floor area datasets 
we presented in this study, projections of future demand can be easily 
obtained on a more-refined spatial resolution (e.g. Public Use Microdata 
Areas (PUMA)). With this unprecedented combination of temporal, 
geographic, and sectoral detail and coverage, this study informs not only 
transmission but distribution system planning to fulfill future demand 
scenarios, which is typically not available from existing studies [7]. 

The presented method of load disaggregation and forecasting pro
vides a valuable input for future studies on predicting building load 
evolution and for integration into capacity expansion and grid operation 
models. However, the model is not designed to capture scenarios, pol
icies or incentives that could significantly alter space occupancy 

Table 4 
Model testing error for past 10 years. Note, the model is fitted on year 2019 data, 
and applied to each of the preceding year with temperature records and inter
polated building floor area and electricity penetration as model input. Also note, 
CAISO is not shown because CA BAs and load zones grid data are not available to 
the authors other than year 2018 and 2019.   

MAPE (%) Error in peak (%) 

NYISO ERCOT NYISO ERCOT 

2019 2.9 3.3 0.3 1.4 
2018 3.1 3.4 1.8 2.6 
2017 3.0 3.9 0.6 0.2 
2016 3.1 3.9 3.3 3.2 
2015 3.7 4.0 2.7 0.6 
2014 4.3 4.0 2.9 3.3 
2013 4.7 4.3 5.5 0.4 
2012 4.6 4.3 2.4 1.3 
2011 4.6 4.3 3.9 2.6 
2010 4.8 4.2 1.3 5.0  
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behavior, as happened with stay at home directives with COVID or 
significant improvements to building envelopes. Future work could 
focus on identifying residential and commercial breakdowns of the 
thermal response. Another extension of the present work could be to 
project growth in electricity demand from “electrifying” current fossil 
fuel-based space and water heating. These studies can be performed 
under various growth assumptions for housing, conditioned floor area, 
heat pump deployment, improved efficiency, flexible loads (e.g. demand 
response), renewable energy and storage capacity expansion, and 
greenhouse gas emission reduction targets. 
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