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 A B S T R A C T

Using household survey data and electricity reliability data, this study analyzes the relationship between grid 
reliability and appliance ownership and usage in Rwanda, a low-income country in Sub-Saharan Africa. We 
estimate the effect of reliability on household appliance ownership by employing lightning as an instrumental 
variable for grid reliability. The findings reveal that while grid reliability has a limited effect on the total 
number of appliances owned, it significantly influences the types of appliances households choose to acquire. 
Higher outage frequencies are linked to reduced ownership of entertainment devices, such as televisions and 
decoders, particularly in low-income households. Conversely, high-income households in low-reliability areas 
tend to reduce their ownership of high-energy, costly appliances, like fridges and cookers. The study further 
explores how appliance ownership affects electricity consumption by estimating the conditional demand. 
The findings suggest that improving grid reliability could modestly enhance electricity consumption among 
wealthier households, though complementary policies targeting the affordability gap are needed to encourage 
low-income households to increase their consumption as well. Consistent with prior research, income remains 
a significant barrier to both appliance ownership and usage in low-income households.
1. Introduction

Access to electricity can significantly enhance the well-being of 
households in Sub-Sahara Africa (SSA) but only if they acquire and 
actively use electric appliances (Richmond and Urpelainen, 2019; Lenz 
et al., 2017). Residential electricity consumption is driven by prefer-
ences for energy services, which in turn depend on the availability 
and usage of appliances such as refrigerators, televisions, and cooking 
devices (Dubin and McFadden, 1984; Nielsen, 1993; Auffhammer and 
Wolfram, 2014). However, even after gaining access to electricity, 
many households in SSA own a limited variety of appliances, leading to 
low levels of electricity consumption (Lenz et al., 2017; Adesina et al., 
2020). These deficiencies not only diminish the impact of electrification 
programs on households’ well-being but also pose challenges for the 
financial viability of distribution utilities due to low residential elec-
tricity consumption (Blimpo and Cosgrove-Davies, 2019). The limited 
appliance ownership observed in SSA highlights the need for inter-
ventions that extend beyond merely expanding access to electricity. 
Instead, understanding what drives appliance ownership and usage is 
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critical for improving both household welfare and the sustainability of 
electricity sectors in these contexts.

A large body of literature has focused on the relationship between 
household income and the adoption of electric appliances, finding that 
income is a major determinant of ownership (Farrell, 1954; Gertler 
et al., 2016; Khandker et al., 2009). As income rises, households 
tend to acquire more appliances, particularly durable and higher-cost 
items like refrigerators and televisions. While income is undoubtedly 
important, recent research suggests that rising incomes alone may not 
be sufficient to drive appliance ownership and residential electricity 
demand (Debnath et al., 2019). Non-income factors, such as credit con-
straints (Wolfram et al., 2012), housing conditions (Matsumoto, 2016a; 
O’Doherty et al., 2008), social influence (Hanna and Oliva, 2015), and 
education levels (Dhanaraj et al., 2018), can also play critical roles in 
determining household adoption of appliances. Additionally, external 
factors like climate can shape appliance ownership decisions (McNeil 
and Letschert, 2010), while limited information about the benefits of 
appliances may further restrict household adoption and use (Bos et al., 
2018). Finally, the type of electricity access matters. Households with 
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grid connections are significantly more likely to own large appliances 
than those using off-grid systems like solar home kits (Lee et al., 2016), 
highlighting the importance of electricity infrastructure for appliance 
adoption in low-income settings. A comprehensive review by (Rich-
mond and Urpelainen, 2019) explores various non-income drivers that 
affect appliance adoption, underscoring the complexity of the factors 
influencing household appliance adoption beyond income alone.

While low income is a key variable explaining low appliance own-
ership, economic theory suggests that an unreliable electricity supply 
reduces the incentive to acquire new appliances. Theoretical models 
indicate that the demand for durable goods, like appliances, stems 
from the services they provide through ownership (Dubin and McFad-
den, 1984). Thus, frequent electricity outages undermine the utility 
of appliances, acting as a disincentive for households to invest in 
them, even when they have the financial means.4 Studies from middle-
income countries such as Nepal, Kyrgyzstan, and Colombia demonstrate 
that households often respond to poor reliability by limiting their 
acquisition of electricity-dependent appliances (Meeks et al., 2023; 
Hashemi, 2022; McRae, 2010). However, the role of reliability of elec-
tricity supply in shaping appliance ownership remains underexplored 
in low-income and rural contexts typical of SSA. In such contexts, 
adoption patterns are not straightforward and the relationship between 
reliability and appliance ownership can be particularly complex. Poor 
electricity reliability may indirectly suppress appliance adoption by 
reducing household income, as frequent outages constrain productive 
activities and income-generating opportunities (Dang and La, 2019). 
Beyond income effects, households may fail to internalize the full 
impact of service quality when making purchasing decisions, deviat-
ing from theoretical predictions. Behavioral factors, such as myopia, 
bounded rationality, and reliance on social cues, further complicate 
decision-making (Himarios, 2000; Ramakrishnan et al., 2020). For 
instance, households might prioritize appliances that confer social sta-
tus over those that directly improve utility. Additionally, external 
factors like climate, housing conditions, and household demographics 
may shape adoption patterns (McNeil and Letschert, 2010; Matsumoto, 
2016a).

Relatively few studies have examined how electricity reliability 
influences household appliance adoption, particularly in the residential 
sector of low-income countries. By contrast, much of the existing liter-
ature on outages has focused on their broader economic consequences. 
Numerous studies show that unreliable electricity reduces output, pro-
ductivity, and revenues in firms across SSA and other developing 
regions (Alam, 2013; Moyo, 2012; Estache, 2005; Abeberese et al., 
2021; Allcott et al., 2016; Cole et al., 2018; Hardy and McCasland, 
2021). These impacts also extend to labor markets, as (Mensah, 2024) 
finds that outages reduce skilled and non-agricultural employment op-
portunities. This broader economic context underscores the importance 
of electricity reliability not only for firm performance but also for 
fostering economic development.

Equally important is the role that appliance ownership can play in 
generating social welfare gains for households. Appliances such as mod-
ern cooking equipment, washing machines, and refrigerators reduce 
domestic burdens and free time for labor market participation, particu-
larly for women (Bhargava and Kerr, 2022; Tewari and Wang, 2021; 
Omotoso and Obembe, 2016; Su and Azam, 2023). Similarly, appli-
ances can reduce child labor and improve educational outcomes (Malhi 
et al., 2025; Kerr, 2019). (Dhanaraj et al., 2018) highlights how refrig-
erators improve nutrition and food security by enabling food preserva-
tion, while (Shi et al., 2022) shows that increased refrigerator uptake 
improves child health outcomes. (De Cian et al., 2025) finds that 
owning an air conditioner increases residential electricity consumption, 
with associated welfare gains including improved productivity, better 

4 An outage is a complete stoppage within the distribution system, 
preventing end users’ consumption of electricity services.
2 
sleep during hot seasons, and potentially life-saving reductions in heat-
related illnesses. Our study complements this literature by examining 
how reliability constraints shape household access to appliances that 
deliver these broader social and economic benefits, an issue of par-
ticular importance in SSA, where persistent service quality challenges 
remain widespread across many countries (Mugyenyi et al., 2024a,b; 
Afrobarometer, 2022; Day, 2020; Blimpo and Cosgrove-Davies, 2019; 
Burgess et al., 2020).

While prior work has demonstrated the negative impacts of out-
ages on firm productivity and welfare, and has documented the wel-
fare gains from appliance ownership for households, relatively little is 
known about how electricity reliability influences appliance adoption 
decisions in low-income SSA residential settings. Our study addresses 
this gap by examining the role of electricity reliability in shaping ap-
pliance ownership and usage among Rwandan households. Specifically, 
we ask:  How does electricity reliability affect household decisions 
regarding appliance ownership and usage in low-income settings?
In doing so, we contribute to the literature by focusing not only on 
the role of reliability in determining electricity usage but also on its 
influence on the adoption of appliances in the first place. We address 
this research question using a unique combination of household survey 
data and administrative data on electricity reliability from Rwanda. The 
household-level survey data, obtained from the Integrated Household 
Living Conditions Surveys (EICV), includes detailed information on 
appliance ownership. The administrative data, provided by the Rwanda 
Energy Group (REG), allows us to measure the frequency of power 
outages. By linking these datasets through geographic information, we 
can rigorously assess the relationship between reliability and appliance 
ownership. To account for potential endogeneity in electricity reliabil-
ity, we use lightning strikes frequency and radiance as an instrumental 
variable, following recent studies on grid reliability (Meeks et al., 2023; 
Andersen and Dalgaard, 2013; Mensah, 2024).

We follow previous literature and evaluate two outcome variables: 
a count of electric appliances (size) and the ownership of specific appli-
ances (composition) (see (Richmond and Urpelainen, 2019) and (Mat-
sumoto, 2016a)). We use conditional fixed-effects Poisson models and 
linear fixed-effects probability models to investigate the household 
appliance stock. Our results indicate that grid reliability has a min-
imal impact on the total number of appliances owned by Rwandan 
households. However, higher outage frequencies reduce ownership 
of certain appliances, particularly entertainment devices like televi-
sions (by 4%) and decoders (by nearly 5%), as well as smartphones. 
This effect is more pronounced for low-income households, who are 
more likely to reduce ownership of entertainment appliances under 
low reliability, while high-income households are less affected. Yet, 
in low-reliability areas, high-income households avoid costly, power-
dependent appliances like fridges and cookers, possibly substituting 
with alternatives.

In addition to examining the relationship between reliability and 
appliance ownership, we also analyze how reliability affects appliance 
usage, as reflected in household electricity consumption. We model 
electricity consumption using a conditional demand function, following 
the approach of (Larsen and Nesbakken, 2004), which is designed to 
estimate the mean electricity consumption at the appliance level among 
households. We also identify key drivers of appliance usage, following 
the methods of (Matsumoto, 2016a). Our analysis further reveals that, 
while outages have limited effects on appliance usage among cur-
rent owners, grid reliability indirectly affects household consumption 
through its influence on appliance ownership. High-income households 
show reduced ownership of energy-intensive devices, while low-income 
households are primarily impacted in terms of low-energy appliances 
like smartphones and TVs. This suggests that targeted reliability im-
provements for wealthier households could enhance overall electricity 
consumption, though complementary support for low-income house-
holds to acquire appliances is also essential to reduce energy poverty 
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and promote equitable access. Balancing these strategies across income 
groups is key to an effective and inclusive energy strategy in Rwanda.

The existing literature on households’ appliance ownership has 
predominantly examined the relationship between household income 
and the adoption of specific appliances, anticipating their role in driv-
ing household electricity demand growth (see (Auffhammer and Wol-
fram, 2014), (Farrell, 1954), (Gertler et al., 2016), (Khandker et al., 
2009), (Matsumoto, 2016a) and (Wolfram et al., 2012)). While low 
income is a key variable explaining low appliance ownership, non-
income factors also shape appliance adoption (Rao and Ummel, 2017; 
Debnath et al., 2019). Poor housing conditions can limit ownership, 
as homeowners and residents of detached homes are more likely to 
invest in appliances than renters (Matsumoto, 2016a; O’Doherty et al., 
2008). External factors, such as climate, can also drive adoption, with 
appliances like fans and air conditioners more common in warmer 
regions (McNeil and Letschert, 2010). Finally, behavioral and infor-
mational barriers further constrain adoption. Households may lack 
information about appliance benefits or fail to fully internalize their 
value, although social influences, such as observing neighbors’ usage, 
can accelerate adoption (Bos et al., 2018; Hanna and Oliva, 2015). 
This paper explores the role of reliability on appliance ownership while 
providing descriptive evidence on other non-income drivers, such as 
gender, household composition, education, and dwelling characteris-
tics. In particular, we find that demographic characteristics of the 
households, specifically the age of the members and the gender of the 
head of household, also show a significant relationship with ownership 
of key appliances.

We also contribute to a small but growing literature on households’ 
response to electricity reliability improvements. Despite increased elec-
tricity access in the 21st century, many developing countries still 
face challenges in ensuring satisfactory service quality (Meeks et al., 
2023; Blimpo and Cosgrove-Davies, 2019; Burgess et al., 2020). In 
this sense, understanding residential consumers’ responses to expe-
riencing changes in electricity quality has attracted the attention of 
researchers. (Meeks et al., 2023) explores appliance ownership and 
reliability in Nepal, (Hashemi, 2022) investigates the same in Kyrgyz 
Republic, (Cissé, 2025) in Senegal and (McRae, 2010) in Colombia. 
These studies indicate that households in developing countries signif-
icantly respond to unreliable services by refraining from purchasing 
certain appliances. Our study extends this inquiry to a low-income 
country, specifically analyzing appliance ownership in Rwanda. The 
adoption patterns in low-income rural settings are nuanced. Moreover, 
our study sets itself apart by leveraging novel administrative data and 
instrumental variables to enhance identification.

The remainder of the paper is organized as follows. Section 2 de-
scribes the data used in our analysis of appliance ownership. Section 3 
outlines the empirical methodology and presents the key results. Sec-
tion 4 examines how reliability and other factors influence appliance-
level electricity consumption. Section 5 offers a broader interpretation 
of the findings, and Section 6 concludes.

2. Data description

Estimating the relationship between electricity service quality and 
household outcomes is often challenging, primarily due to the diffi-
culty of accurately measuring electricity reliability. Utilities may not 
consistently record outages, or, if they do, may lack the incentive to 
share such data with external researchers (Klytchnikova and Lokshin, 
2009). Consequently, previous research has relied on indirect measures 
of electricity quality, such as self-reported data, which is susceptible to 
misreporting (Carranza and Meeks, 2021), proxies like electricity short-
ages (Meeks et al., 2023), or satellite imagery of nighttime lights, which 
suffers from limitations such as infrequent overpass intervals (Mann 
et al., 2016).

To overcome these data limitations, we utilize a novel dataset that 
combines public data with proprietary outage records at the feeder 
3 
Fig. 1. Distribution feeder lines.
Note: Feeder lines are represented by different colors, with a bounding box 
indicating each feeder’s coverage area. Feeders farther from Kigali (the capital) 
tend to cover larger areas. The smallest feeder covers 1.25 km2, while the 
largest spans 3320 km2. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

level from the Rwanda Energy Group (REG), a government-owned 
vertically integrated utility. This dataset provides detailed information 
on outages from 2016 to 2020, including the duration, occurrence date, 
cause, and affected substation and feeder line.5 Rwanda’s electricity 
network consists of many long radial feeder lines, some extending over 
300 km. Outages on these lines can impact wide areas and affect a large 
number of households.

In addition, we integrate additional data from REG, which maintains 
a record of 52,418 low-voltage electricity conductor lines. These lines 
are linked to their corresponding substations and feeder lines. By map-
ping outages from the feeder level to the low-voltage lines, we estimate 
outage exposure for each line, as shown in Fig.  1.6 This mapping allows 
us to connect feeder-level outages to specific households served by 
these low-voltage lines.7

We complement this reliability data with household-level informa-
tion from the Integrated Household Living Condition Survey (EICV), 
a national cross-sectional survey conducted every couple of years. For 
this analysis, we draw on the 2016/2017 EICV round, covering 14,580 
households across 1,260 sample villages. The survey collected data 
on household characteristics and appliance ownership, such as radios, 
televisions, fridges, and cookers, among others. For our analysis, we 
focus on the 3600 households with a grid electricity connection, which 
represent 25% of the surveyed households. Fig.  2 illustrates the spatial 
distribution of the survey data, highlighting the grid electrification 
rates across Rwanda’s districts. Note that this does not include off-
grid electrification, particularly solar systems. This electrification rises 
to 33% once these alternative systems are taken into account (see 
Appendix Table A2)

To assign grid reliability statistics to individual households from the 
survey dataset, we collaborated with the National Institute of Statistics 
of Rwanda (NISR), the agency responsible for implementing the EICV 

5 We have outage data from 2016 to 2020, however, we only utilize 2016 
and 2017 data which matches the time period of our survey. The number of 
unique feeders tracked each year is as follows: 53 in 2016, and 57 in 2017. The 
increase likely reflects efforts to meet growing electricity demand as Rwanda 
expands grid access.

6 A limitation of our approach is that its limited in its ability to identify 
outages at specific low voltage locations.

7 Feeder level/lines operate at the medium voltage level.
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Fig. 2. Spatial distribution of survey.
Note: Figure (a) shows the rural concentration by district (%), and figure (b) shows the grid electrification rate by district (%). Major cities/towns, including the 
capital, Kigali, are indicated by dots.
surveys.8 We matched household GPS coordinates to the nearest low-
voltage line within an 800-m range, reflecting the utility company’s 
connection policy (REG, 2020). Through this process, each household 
was assigned outage statistics based on the nearest feeder line.

We constructed measures of appliance ownership among grid con-
nected households following (Richmond and Urpelainen, 2019) and
(Matsumoto, 2016a). These include the total number of appliances 
owned by each household, as well as categorization of appliances 
based on service type, capital cost, and wattage. Table  1 presents the 
appliance categories.9 We also created two variables: a binary indicator 
for whether a household owns a particular appliance, and a numeric 
count of each appliance type. In our analysis, we also include EICV data 
on household socioeconomic status, income, and access to infrastruc-
ture. The distance to major cities and markets is calculated using the 
Euclidean distance measure, which represents the straight line distance 
between a household and key infrastructure locations, as illustrated 
in Fig.  3. Lastly, we incorporate weather data, including rainfall and 
lightning activity. Rainfall data comes from the Rwanda Meteorological 
Agency, with 40 years of daily records from 18 stations across the 
country. Using these records, we estimate average rainfall through 
geostatistical interpolation  (Murphy and Krajnik, 2017) (detailed in 
Appendix A), as shown in Fig.  4(a). The interpolated rainfall estimates 
align with the official figures reported by the Rwanda Meteorological 
Agency.10

Lightning data, obtained from the Tropical Rainfall Measuring Mis-
sion (TRMM), cover 2013–2015 and provide lightning frequency and 
intensity  (Blakeslee, 1998; Earth Data, 2023). These lightning events 
are mapped to feeder regions and serve as an instrumental variable 
for assessing electricity reliability (Fig.  4(b)). Our dataset contains 592 
lightning events, including all the flashes (strikes) recorded by the 
imaging sensor. Fig.  4(b) visually presents the distribution of lightning 
strikes across Rwanda during 2013–2015, illustrating the widespread 
occurrence of strikes throughout the country.

Using these data, we assign lightning event statistics to the feeder 
region using bounding boxes as depicted in Fig.  1. We calculated the 
average annual number of strikes in the area and the average radiance 
(intensity) of all the flashes in the area. We then assign these values 
to each household in the feeder region and, hence, our lightning data 
measures lightning activity in the grid area, which serves electricity to 
the household.

8 The NISR does not disclose household GPS coordinates publicly; therefore, 
the matching process was conducted at their headquarters in Kigali.

9 We define phones with internet capabilities as smartphones and those 
without as feature phones.
10 https://www.meteorwanda.gov.rw/index.php?id=30.
4 
Table 1
Appliance categories.
 Category Appliance(s) Cost Use Wattage 
 0 No appliances – – –  
 1 Feature phones Smart phones Low Communication Low  
 Radio  
 TVs Decoders  
 2 Satellite dish DVD player Medium Entertainment Low  
 Music system Camera  
 3 Computer Printer Medium Productivity Medium 
 Sewing Machine  
 Fridge Laundry machine  
 4 Hotplate Cooker High Convenience High  
 Fan Water Filter  

Fig. 3. Transport and major towns in Rwanda.

2.1. A closer look

From October 2016 to October 2017, our sample of 3600 grid-
electrified households owned a total of 15,510 appliances recorded 
in the data. Fig.  5 shows the composition of this appliance stock, 
dominated by mobile phones, radios, and TVs. This distribution aligns 
with findings from other studies on appliance ownership in Rwanda 
and Sub-Saharan Africa (Lenz et al., 2017; Bos et al., 2018; Muza and 
Debnath, 2021).

https://www.meteorwanda.gov.rw/index.php?id=30
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Fig. 4. Rainfall and lightning activity.
Note: Figure (a) shows mean annual rainfall in Rwanda. Each dot is one weather station recording data on rainfall. Figure (b) presents lightning strikes, with 
color indicating intensity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
 

Fig. 5. Composition of appliance stock Rwanda.
Note: This figure shows the share of appliances owned by a sample of 3600 
grid-electrified households in Rwanda. ‘‘Other’’ appliances include printers, 
cameras, electric fans, hotplates, music systems, and laundry machines.

To better understand household appliance ownership, Table  2
presents the number of households that own at least one appliance. 
On average, households own 4 appliances, with nearly 87% owning 
more than one. Radios and mobile phones are the most common, while 
other appliances have lower penetration rates. Appliance ownership is 
generally low in Rwanda, both in quantity and variety.11 Fig.  6 breaks 
down ownership across various appliance categories. Fig.  6(a) shows 
the share of households owning at least one appliance per category, 
while Fig.  6(b) illustrates the distribution of units within each category 
for those households. The data reveals that communication and en-
tertainment devices dominate, while more expensive, energy-intensive 
appliances like cookers and refrigerators are much less common. This 

11 See Appendix A for ownership rates amongst households with access to 
non grid-electricity.
5 
suggests that only a small number of households have moved up the 
‘‘appliance ladder’’.12

This pattern likely reflects the financial constraints faced by many 
households. The high cost of appliances, coupled with low average 
incomes (Sievert and Steinbuks, 2020), limits purchases of more ex-
pensive items. For example, in 2018, the average cost of a cooker 
was $410 USD, a refrigerator $540 USD, and a washing machine 
$420 USD (Statista Market Insights)13). In contrast, Rwanda’s average 
annual income was only $780 USD in 2018 (Sally Smith et al., 2020), 
making it difficult for households to afford these appliances. As a result, 
electricity usage remains largely limited to basic needs like lighting 
and phone charging. Increases in household income or better access 
to credit could potentially lead to higher appliance ownership and, 
consequently, greater electricity consumption.

Despite having better measures than other African countries (Blimpo
and Cosgrove-Davies, 2019), Rwanda still faces challenges with elec-
tricity reliability. Fig.  7 shows the variation in grid reliability across 
districts, presenting three key metrics: total annual outage time, daily 
outage frequency, and outage duration per incident. Though the data 
is aggregated at the district level for clarity, there is significant within-
district variation, which is leveraged in our statistical analysis. We 
are missing reliability data for the two northernmost districts in our 
sample, affecting 144 grid-connected households. These households 
were excluded from the regression analysis due to the missing data.

3. Appliance ownership and reliability

In this section, we study the role of reliability in appliance own-
ership. Ideally, we would model how the probability of buying a 
given appliance changes as the grid reliability faced by each house-
hold changes over time (see (Meeks et al., 2023) for an example). 
Regrettably, the nature of our available data precludes the execution of 
such a longitudinal study. Instead, we conduct a cross-sectional analysis 
comparing appliance ownership across regions with different reliability 
levels. We also analyze other drivers, including income, demographics, 
education, gender, and dwelling characteristics.

12 We use the concept of the appliance ladder to describe how house-
holds incrementally adopt appliances as their income improve, with low-
income households typically acquiring basic devices first and moving toward 
energy-intensive appliances over time.
13 https://www.statista.com/outlook/cmo/household-appliances/major-
appliances/rwanda#price.

https://www.statista.com/outlook/cmo/household-appliances/major-appliances/rwanda#price
https://www.statista.com/outlook/cmo/household-appliances/major-appliances/rwanda#price
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Table 2
Appliance distribution among electrified households.
 Penetration Households who own the appliance
 Number % Mean St. Dev. Min. Max. HHs > 1 (%) 
 Any 3480 96.670 4.440 3.330 1 27 86.70  
 Feature phones 2955 82.080 1.840 1.100 1 11 52.83  
 Radio 2324 64.560 1.150 0.430 1 5 13.08  
 Smart phones 1976 54.890 1.770 1.100 1 10 49.04  
 TV 1322 36.720 1.030 0.190 1 3 3.03  
 Decoder 982 27.280 1.050 0.230 1 4 4.28  
 DVD player 897 24.920 1.060 0.400 1 10 3.90  
 Computer 520 14.440 1.360 0.710 1 6 26.35  
 Cooker 301 8.360 1.050 0.270 1 4 4.65  
 Fridge 242 6.720 1.040 0.240 1 3 3.31  
 Satellite dish 198 5.500 1.040 0.190 1 2 3.54  
 Water filter 146 4.060 1.000 0.000 1 1 0.00  
 Sewing machine 109 3.030 1.370 1.020 1 8 18.35  
 Camera 79 2.190 1.130 0.430 1 4 10.13  
 Hotplate 73 2.030 1.030 0.160 1 2 2.74  
 Music system 71 1.970 1.060 0.290 1 3 4.23  
 Electric fan 30 0.830 1.000 0.000 1 1 0.00  
 Printer 24 0.670 1.120 0.340 1 2 12.50  
 Laundry machine 11 0.310 1.090 0.300 1 2 9.09  
Note: The values in this table were calculated using the 3600 grid-electrified households in the EICV sample. Appliance counts 
are based on households owning at least one unit in each category.
Fig. 6. Ownership by appliance category.
Fig. 7. Average reliability metrics per district - 2017.
6 
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3.1. Research design

Our research design follows (Richmond and Urpelainen, 2019) and
(Matsumoto, 2016a), but it also considers the intricacies of our partic-
ular case, appliance ownership in Rwanda, characterized by its limited 
prevalence, resulting in certain appliances being owned by only a few 
households and consequently generating an abundance of zeros in our 
dataset. This section explains our empirical strategy.

First, we analyze the role of reliability on the total number of 
appliances owned by households by studying the intensity at which 
households invest in appliances with a conditional fixed-effects Poisson 
model.14 Let 𝑦𝑖𝑗 be the total number of household-owned appliances 𝑖
in district 𝑗. Under the Poisson assumptions, the probability of owning 
𝑦𝑖𝑗 units of appliances is given by Eq.  (1)

𝑃𝑟(𝑌 = 𝑦𝑖𝑗 |𝑋𝑖𝑗 , 𝑍𝑖𝑗 , 𝛼𝑗 ) =
(𝐸[𝑌 |𝑋𝑖𝑗 , 𝑍𝑖𝑗 , 𝛼𝑗 ])

𝑦𝑖𝑗 ⋅ 𝑒−𝐸[𝑌 |𝑋𝑖𝑗 ,𝑍𝑖𝑗 ,𝛼𝑗 ]

𝑦𝑖𝑗 !
(1)

where 𝐸[𝑌 |𝑋𝑖𝑗 , 𝑍𝑖𝑗 , 𝛼𝑗 ] = 𝑒𝑋𝑖𝑗𝛽+𝑍′
𝑖𝑗𝛤+𝛼𝑗  represents the anticipated num-

ber of appliances, dependent on a series of variables. Here, 𝑋𝑖𝑗 is the 
grid reliability; 𝑍𝑖𝑗 is a vector of control variables that include both 
income and non-income drivers; 𝛼𝑗 are district fixed effect to capture 
common characteristics for households within the district. We do not 
use village fixed effects since villages are generally very small, so our 
data will not have enough within-village variation. Note that even 
though Poisson models are inherently nonlinear, using the linear index 
and the exponential link function leads to multiplicative separability, 
allowing us to estimate the model with fixed effects. We employ the 
conditional maximum likelihood methodology proposed by (Hausman 
et al., 1984) to estimate this model.

We derive our measure of grid reliability, referred to as outage fre-
quency, from the average number of outages over the 24-month period 
spanning 2016 and 2017.15 Unfortunately, we lack an extensive time 
series predating 2016/2017, prompting us to rely on the average for 
these two years to construct variables that encapsulate grid reliability. 
However, it is important to note that the stability of reliability metrics 
across time is a hallmark, given that outage occurrences predominantly 
hinge on factors like weather conditions, vegetation interference, an-
imal disruptions, feeder length, and various other determinants that 
exhibit minimal temporal variability. In this context, our parameter 
of interest is 𝛽, which measures the change in the log of the expected 
number of appliances owned by a household when reliability improves 
by one unit. Using the point estimates, we also calculate the incidence 
ratio rate, which measures the increase in the expected number of 
appliances owned by the household as reliability improves by 1 unit 
by exponentiating the regression coefficient.

Eq.  (1) includes control variables that account for household charac-
teristics affecting appliance ownership. Household income is captured 
by the log of monthly expenditures, which is a reliable income proxy, 
particularly for households with informal or non-monetary income 
sources (Cope et al., 2012). Additionally, total savings serves as an in-
dicator of wealth, reflecting a household’s financial capacity to acquire 

14 The Poisson model relies on two strong assumptions. First, an event 
happening in a period of time has a constant probability (stationarity). 
Second, the model assumes that the occurrence of an event does not affect 
the probability of a second event happening (independence). Under this 
assumption, the conditional variance is the same as the conditional expectation 
(equidispersion).
15 Within our dataset, these years have the worst reliability performance. 
Indeed, there is a substantial improvement in grid reliability in the proceeding 
years (i.e. 2018, 2019 and 2020). We rely on outage frequency and not outage 
duration because outage frequency is highly correlated with the total hours a 
household does not have access to electricity in a given year. In Rwanda, the 
average duration of an outage was 20 min in the period 2016/2017 with a 
standard deviation of 7.4 min.
7 
appliances. The EICV survey provides data on employment stability, 
and we include the average turnover of jobs within the household. 
Job turnover reflects income uncertainty, which may impact elec-
tricity consumption and appliance ownership, as prior studies have 
suggested (Blimpo and Cosgrove-Davies, 2019).

Demographic controls include variables for the gender of the house-
hold head (dummy for female), the number of children, women, and 
seniors, who may face higher health risks from poor indoor air qual-
ity. Controlling for these demographics helps account for variation in 
health priorities and the associated financial and informational barriers 
to improving indoor air quality (Richmond and Urpelainen, 2019). 
Education and skills are key drivers of appliance ownership (Dhanaraj 
et al., 2018). We include a dummy for households where the head 
has attended school, as well as dummies for business ownership and 
high-skill occupations, recognizing that these characteristics are likely 
correlated with knowledge of and access to appliances.

Household location and structure are also controlled for in the 
analysis. A dummy for rural location captures limited exposure to ap-
pliances in non-urban areas, while the distance to major towns reflects 
access to markets where appliances are sold. Additionally, the number 
of rooms and a dummy for multiple-building residences account for 
potential redundancy in appliance ownership. Homeownership and 
years at the current location are also included to capture stability 
and the likelihood of investing in less portable appliances. Climatic 
factors are represented by mean local rainfall, acknowledging that 
climate can influence appliance usage, such as fans in warmer areas or 
outdoor equipment affected by rainfall (Sakah et al., 2019). Although 
temperature variation within Rwanda is modest, rainfall patterns differ 
substantially across regions, from 1000 to 1400 mm annually.

Finally, we control for the utility’s capacity to restore service by 
including the average outage duration in the area. This measure re-
flects the utility’s responsiveness, which may affect appliance usage 
preferences (McRae, 2010). While this variable may be endogenous, 
it provides an important indicator of utility performance.16 Although 
the cause of a power outage can influence the restoration duration, the 
average outage duration is a reliable metric for evaluating the utility’s 
overall responsiveness to outages.

The variables used in the analysis are summarized in Table  3. 
Specifically, our regression models incorporate data from 2706 grid-
connected households for which complete variable information is avail-
able.

In the second part of the analysis, we empirically examine how 
electricity reliability affects household appliance ownership. Due to 
low appliance penetration rates, most below 30% (Table  2), the data 
contains an excess of zeros, a condition known as zero inflation (Hilbe, 
2014). To address this, we conceptualize appliance ownership as a 
two-step decision: first, whether to acquire an appliance (a yes/no 
choice), and second, the quantity of units if the decision to acquire is 
affirmative. This approach recognizes that the factors influencing the 
ownership of an appliance may differ from those affecting the number 
of units owned (Ščasnỳ and Urban, 2009).

For modeling, we define 𝑦𝓁𝑖𝑗 as the count of appliance 𝓁 owned by 
household 𝑖 in district 𝑗, and use the indicator variable 𝑞𝓁𝑖𝑗 = 1[𝑦𝓁𝑖𝑗 > 0]
to denote ownership. Despite the prevalent use of nonlinear models for 
discrete outcomes, we use linear models here to mitigate the incidental 
parameters problem associated with fixed effects in nonlinear settings, 
improving interpretability (Richmond and Urpelainen, 2019). While 
conditional logit models could handle panel-fixed effects through a 
likelihood function transformation (see (Chamberlain, 1980)), the low 
ownership rates of certain appliances (Table  2) classify them as rare 
events, which can bias binary nonlinear estimates (King and Zeng, 

16 Unfortunately, we could not find good instruments for the duration, and 
hence, we are cautious in analyzing the coefficient for this variable. We expect 
this variable to be endogenous.
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Table 3
Summary statistics (Number of Obs = 2706).
 Variable Mean St. Dev. Min. Max.  
 Reliability  
  Average duration without electricity (h/year) 116.920 92.750 17.260 496.500 
  Average Frequency (outages/day) 1.069 0.837 0.064 2.91  
  Average Outage Duration (min/outage) 20.040 7.410 9.670 67.110  
 Income and employment  
  Expenditure (log RWF month) 11.570 0.930 8.790 14.580  
  Savings (million RWF) 0.250 2.320 0 99  
  Has business (dummy) 0.450 0.500 0 1  
  Job instability (number of jobs/member) 1.480 0.620 1 7  
  Involves in high skill occupation (dummy) 0.190 0.370 0 1  
 Demographics  
  Female (number) 2.310 1.580 0 13  
  Children (number) 1.860 1.640 0 9  
  Seniors (number) 0.140 0.410 0 3  
 Head of Household  
  Female (dummy) 0.190 0.390 0 1  
  Below 35 years old (dummy) 0.430 0.490 0 1  
  Rwandese (dummy) 0.990 0.100 0 1  
  Attended School (dummy) 0.250 0.440 0 1  
 Dwelling and ownership  
  Number of rooms (count) 3.760 1.610 1 10  
  Multiples houses (dummy) 0.180 0.380 0 1  
  Multiples households (dummy) 0.280 0.450 0 1  
  Number of years in house (count) 6.850 8.850 0 63  
  Own house (dummy) 0.560 0.500 0 1  
 Location  
  Rural (dummy) 0.450 0.500 0 1  
  Distance to major town (km) 9.600 7.900 0.050 43.860  
  Distance to trade center (km) 1.780 1.540 0.010 9.990  
  Mean rainfall (mm) 2.600 0.370 1.850 3.690  
2001). Our focus on the direction and relative strength of relationships 
between variables justifies using linear models for binary outcomes.

Thus, we specify the fixed-effects model for appliance ownership as:
𝑞𝓁𝑖𝑗 = 𝑋𝑖𝑗𝛽𝓁 +𝑍′

𝑖𝑗𝛤𝓁 + 𝛼𝑗 + 𝜀𝑖𝑗 (2)

where 𝑋𝑖𝑗 , 𝑍𝑖𝑗 , and 𝛼𝑗 are defined as in Eq.  (1). We estimate each 
appliance model as seemingly unrelated equations.

3.1.1. Identification
Estimating the relationship between electricity reliability and house-

hold outcomes is typically challenging. Service quality is often endoge-
nous and correlated with household characteristics. Two key factors 
contribute to this complexity. Firstly, the non-random nature of house-
hold locations, influenced by regional factors such as weather and 
economic activity (Sinha et al., 2018; Pawar and Jha, 2023). These 
factors play an important role in determining the reliability levels of 
an electric system. Fig.  8 shows that overcurrents, under-frequency, 
and earth faults are the predominant causes of outages in our data, 
and these are the consequence of regional factors such as weather, 
vegetation, and electricity demand. Secondly, the reliability of the 
grid is dependent on utility decisions, including maintenance and grid 
design, demonstrating substantial regional variations that correlate 
with household characteristics (Meeks et al., 2023). Indeed, the dis-
tribution network design typically adopts radial feeders for rural areas 
in Rwanda, in contrast to networked feeders commonly seen in urban 
locales (REG, 2021).17 Radial networks usually have long feeder lines, 
making them more susceptible to outages.

17 The distribution network can have radial or networked configurations. 
Radial networks lack interconnections with alternative supply points, while 
networked networks boast multiple connections to diverse supply sources. 
Radial networks are used in rural Rwanda due to the isolated nature of rural 
loads, making the use of network feeders economically less feasible (REG, 
2021).
8 
Fig. 8. Main causes of outages.

Inevitable measurement errors occur when capturing power infras-
tructure quality (Chen et al., 2023). Despite possessing novel reliability 
data, our data set may not precisely align with localized outages, 
which often go unnoticed in utility tracking. Achieving a compre-
hensive match between these measured outages and household-level 
outages proves challenging, particularly given extensive feeder lines 
that stretch over considerable distances and branch into multiple dis-
tribution spurs serving smaller communities. This inherent limitation 
poses a methodological challenge. Our use of feeder outages serves as 
a proxy to characterize the ‘‘standard’’ service quality experienced by 
households. As acknowledged in econometrics literature, measurement 
errors in the independent variable result in attenuation bias (Bollen, 
1989; Wooldridge, 2010).

While our model controls for district unobservables, it does not fully 
address endogeneity. Consequently, our identification strategy relies 
on the use of two instrumental variables that characterize lightning 
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Table 4
Instrumental variables (Number of Obs = 2706).
 Variable Mean St. Dev. Min. Max.  
 Average lightning 
radiance (millon 
μJ/sr/m2/μm)

0.500 0.260 0.100 2.120 

 Frequency lightning 
(count/year)

7.170 8.590 0.330 27  

Note: Summary statistics were calculated across each household in our data. Lightning. 
values assigned to each household represent the ‘‘typical’’ lighting activity in the region 
where the household lives.

activity in the different parts of the country: the average radiance of 
lightning strikes18 and the number of lightning strikes.19

Lightning disturbances are usually a major problem for electric-
ity networks and cause service interruptions (Rezinkina et al., 2022; 
Minnaar et al., 2012; Alvehag and Soder, 2010; Mensah, 2024). For 
example, lightning damage accounts for about 65% of distribution 
network failures in South Africa (Andersen and Dalgaard, 2013). The 
energy carried by a single lightning bolt is immense, averaging around 
1 gigavolt with a typical current of 10,000 to 30,000 amperes (Gunther, 
2023). The heat produced can also be substantial, reaching tempera-
tures five times higher than the surface of the Sun (Rezinkina et al., 
2022). Strikes near the grid can cause overvoltages, disrupt transform-
ers, poles, and substations, or induce electromagnetic fields affecting 
grid operations.

Our first instrument is the frequency of lightning strikes, as prior 
studies have shown that areas with high lightning density often expe-
rience more frequent power outages (Chisholm and Cummins, 2006). 
Our second instrument is the average intensity of lightning strikes, mea-
sured by radiance. Higher-intensity strikes are more likely to lead to 
grid failures. Table  4 provides summary statistics for these instruments.

Our reduced-form equation for reliability is given by 
𝑋𝑖𝑗 = 𝑊 ′

𝑖𝑗𝛱 +𝑍′
𝑖𝑗𝛬 + 𝛼𝑗 + 𝜀𝑖𝑗 (3)

where 𝑋𝑖𝑗 is the outage frequency, 𝑊 ′
𝑖𝑗 are our instruments, 𝑍𝑖𝑗 are the 

control variables from our structural equation, and 𝛼𝑗 district fixed-
effects. Table  5 presents the results of our first-stage reduced-form 
regression. As observed in the table, the coefficients are positive and 
significant, which means that the average number of outages increases 
with the frequency and intensity of lightning strikes. Furthermore, the 
results affirm the instruments’ relevance, substantiated by both the 
F-statistics and the Cragg-Donald Wald-F statistic.20

Our identification assumption is that our instruments are exogenous 
and uncorrelated with the structural error term, conditional on the 
control variables. This assumption is grounded on the random nature 
of lightning, which can strike anywhere, as noted by (Oceanic and 
Administration), 2020) and (Gunther, 2023). The occurrence of light-
ning strikes depends on the specific buildup of positive and negative 
charges between clouds and the ground.21 Similarly, the intensity of 
a lightning strike depends on the electric charges inside the clouds. 
These factors are random and therefore difficult to correlate with 
economic and social characteristics that could influence the location of 
the households (Gunther, 2023). Our assumption would fail if there are 

18 Radiance is used to characterize diffuse emission and reflection of 
electromagnetic radiation, and to quantify emission of neutrinos and other 
particles.
19 The rank condition establishes that we need at least 1 valid instruments 
for the identification of the model.
20 (Staiger and Stock, 1997) establishes the rule-of-thumb for this test: if the 
F-statistic is less than 10, the instruments are weak, and no valid statistical 
inference can be made.
21 This allows positive charges below to attract them, creating powerful 
discharges of electricity known as lightning.
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Table 5
First-stage results.
 Dependent variable: Frequency of outages (number/day)
 Lightning radiance 0.463**  
 (0.202)  
 Lightning frequency 0.069***  
 (0.006)  
 Relevance and Weak-IV Test
  F-statistic 401.89  
  Cragg-Donald Wald-F statistica 1477.14  
 Observations 2706  
 Number of district 26  
 Mean observations per group 104.1  
Note: All the exogenous variables from the structural equation are including in the 
first-stage regression, including the district-fixed effects. Clustered standard error at 
the district level in parenthesis. *** p < 0.01, ** p < 0.05, * p < 0.1.
a Stock-Yogo (2005) weak IV F–test critical values for single endogenous regressor: 
19.93 (10% maximal IV size); 11.59 (15% maximal IV size); 8.75 (20% maximal IV 
size).

differences in other factors leading to thunderstorm development, and 
cloud formation specifically, within the country. Factors influencing 
cloud formation include meteorological conditions such as warm tem-
peratures and strong solar radiation. Solar radiation and temperature 
do not present significant differences in Rwanda, a relatively small 
country. For these reasons, we believe our identifying assumption is 
a plausible one. To support this claim, we present the J-statistic and 
𝑝-value for the over-identification test for each regression model in 
Appendix B. The results show that we fail to reject the null hypothesis 
that the instruments are exogenous at 5%

It is essential to note that, for our linear models, we implement 
2SLS fixed effects models. However, the 2SLS approach is not valid for 
nonlinear models and may not produce a consistent estimate. In cases 
where the second-stage equation involves nonlinearity, as seen in our 
Poisson models, the predicted endogenous variable from the first-stage 
regression can become correlated with the residuals (Cameron and 
Trivedi, 2013; Wooldridge, 1999). To address this challenge, we opt 
for the Control Function Approach (CFA), a two-step process where we 
incorporate the predicted residuals from the first stage into the second 
stage (Wooldridge, 1997; Cameron and Trivedi, 2013; Wooldridge, 
1999). The implementation of the CFA is valid in the case of Poisson 
Regression given the multiplicative separability of the second stage and 
the linear model in the first, relying on the normality assumption of 
the residuals of this stage (Cameron and Trivedi, 2013; Wooldridge, 
1999). In this approach, bootstrap standard errors are employed to 
accommodate the uncertainty stemming from the first stage.

3.2. Empirical results

This section presents the empirical findings of our study. We be-
gin by examining the impact of electricity reliability on household 
appliance ownership. Following that, we provide descriptive insights 
into other determinants of household appliance demand. In this latter 
analysis, we interpret the regression coefficients as correlations rather 
than causal effects, due to limitations in establishing causality.

3.2.1. The role of reliability in ownership
Table  6 displays the regression results on the relationship between 

total appliance ownership and reliability. Each column represents a 
different model specification, showing estimated coefficients and their 
incidence-rate ratios obtained by exponentiating the coefficients. In ad-
dition, we present results incorporating instrumental variables through 
a control function approach and compare with an alternative condi-
tional fixed-effects negative binomial model to account for potential 
overdispersion in appliance ownership data. The Poisson model as-
sumes equidispersion (mean equals variance), which we relax in the 
final columns of Table  6.



J. Mugyenyi et al. Energy Economics 151 (2025) 108907 
Table 6
Reliability and total number of appliances.
 Conditional fixed-effects poisson FE + CFA
 Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6 Poisson Neg. Bin.  
 Frequency of outages (number/day)  
  Point estimate 0.0001 0.010 0.003 0.001 −0.010 −0.028 −0.055 −0.056  
 (0.052) (0.037) (0.033) (0.031) (0.023) (0.019) (0.054) (0.055)  
  Incidence ratio 1.000 1.010 1.002 1.001 0.999 0.971 0.946 0.946  
 Control variables  
  Income and employment Y Y Y Y Y Y Y  
  Demographics Y Y Y Y Y Y  
  Head of household Y Y Y Y Y  
  Dwelling and ownership Y Y Y Y  
  Location Y Y Y  
  District FE Y Y Y Y Y Y Y Y  
 Wald 0.00 3568.56 10076.80 7987.79 25062.76 35460.09 83673.86 34979.94 
 Log pseudolikelihood −7109.56 −5468.70 −5358.95 −5300.72 −5205.33 −5193.05 −5192.44 −5193.49 
 Observations 2706 2706 2706 2706 2706 2706 2706 2706  
 Number of district 26 26 26 26 26 26 26 26  
 Mean observations per group 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1  
Note: Bootstrapped standard errors in parenthesis. Total number of appliances include radios, phones, TV, decoder, satellite dishes,cookers, fridges, DVDs, music systems, computers 
and printers, cameras, hotplates, electric fans, laundry machines, water filters and sewing machines. *** p < 0.01, ** p < 0.05, * p < 0.1.
The results in Table  6 highlight the importance of household char-
acteristics when examining the effect of reliability on appliance own-
ership. As additional control variables are added, the frequency of 
outages shows a negative association with appliance ownership, though 
not statistically significant in the final specifications. This shift suggests 
that controlling for unobserved factors through instrumental variables 
minimizes potential biases from endogeneity in the reliability variable. 
The preferred model, the two-step conditional fixed-effects Poisson, 
shows a negative but non-significant association, consistent across all 
fully controlled models.

These results imply that, overall, the frequency of outages has 
minimal influence on the number of appliances owned by Rwandan 
households. One possible explanation is limited awareness of grid relia-
bility, or households may perceive reliability differently. Alternatively, 
affordability constraints could play a role: With low median incomes 
relative to appliance costs, budget limitations may suppress demand 
for appliances, regardless of grid reliability. However, households may 
still adapt by shifting the types of appliances they own, influencing the 
composition of the appliance stock.

Fig.  9 illustrates the relationship between outage frequency and 
the probability of investing in specific appliance categories. The figure 
displays coefficients that quantify differences in ownership probability 
based on reliability in various regions. Detailed regression outputs can 
be found in Appendix B.

As shown in Fig.  9, higher outage frequencies correlate with lower 
ownership rates for entertainment appliances, such as televisions and 
decoders. Specifically, one additional outage per day is associated with 
a 4% reduction in the likelihood of owning a television and a nearly 
5% reduction for decoders.22 The lack of reliability deters households 
from investing in these entertainment sources. In contrast, Fig.  9(a) 
reveals no substantial relationship between reliability and ownership 
of communication appliances. However, a higher outage frequency 
significantly reduces the likelihood of owning energy-intensive devices 
like smartphones, which require more frequent charging, an issue in 
regions with low reliability.

Appendix B presents the regression table with all the coefficients. 
From those tables, we can observe that both fridges and satellite dishes 
are significant at 10% significance level but not 5%. The point estimates 
in both cases is negative. This result suggests that there is a negative 
effect on the composition of the stock of appliances owned by the 
households, yet the uncertainty associated with these two coefficients 

22 The larger effect size for decoders likely stems from televisions being a 
prerequisite for decoders.
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is larger and we need to allow for more type I error in our tests in order 
to determine reject the null hypothesis. For this reason, we follow the 
5% confidence level in the rest of the analysis.

To complement these results, Fig.  10 presents the estimated coeffi-
cients from interacting our reliability variable with a dummy variable 
capturing household income level. Here, we define a ‘‘high’’ income 
household as one with expenditure above the sample median, coded 
as 1; ‘‘low’’ income households are those with expenditure below the 
median, coded as 0. This interaction produces our new variables of 
interest: reliability interacted with the income dummies.

To avoid the ‘‘forbidden regression’’ issue, we rerun the first stage 
using a non-linear functional form of our instruments. Specifically, 
we introduce two endogenous variables defined by the interaction of 
reliability with the income dummies. Separate first-stage regressions 
are conducted for each endogenous variable, with instruments also 
interacted with the endogenous terms. The coefficients in Fig.  10 repre-
sent second-stage estimates (detailed regression outputs are available in 
Appendix B). The left side of the plot shows the effects on low-income 
households, highlighting changes in the probability of investing in key 
appliances with a one-unit decrease in reliability. On the right, the plot 
presents coefficients for high-income households.

The figure reveals nuanced patterns in appliance investments based 
on income level. For low-income households, the likelihood of investing 
in televisions, and decoders declines with lower reliability, whereas 
high-income households show no significant changes in ownership of 
these appliances under similar conditions. This pattern likely stems 
from two factors. First, the cost of these appliances may be manageable 
for high-income households, making them less sensitive to reliability 
constraints, whereas for low-income households, even modestly priced 
appliances can strain budgets if usage is unreliable. Second, high-
income households may have more flexibility in appliance usage due 
to their distinct consumption patterns and employment types, allowing 
them to adjust usage based on power availability, a flexibility often 
unavailable to low-income households.

Additionally, Fig.  10 shows that high-income households in areas 
with low reliability are less likely to own fridges and cookers, which 
is not observed for low-income households, who generally do not own 
these higher-cost appliances regardless of reliability. This suggests that 
high-income households in less reliable regions are more inclined to use 
alternative energy sources for cooking and to forego fridge ownership 
due to inconsistent power, indicating that these appliances are both 
costly and require shifts in consumption patterns when reliability is 
low.

In conclusion, these findings emphasize that both income and relia-
bility strongly influence household appliance investments. Low-income 
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Fig. 9. Reliability and willingness to invest in appliances.
Note: Dots represent the point estimate. Vertical lines are the 95% confidence intervals. Clustered standard errors at the district level were used to construct the 
confidence intervals. For regression tables, please refer to Appendix B. J-statistics and p-values for the over-identification tests are also presented in Appendix B.
Fig. 10. Expenditure, income, and willigness to invest in appliances.
Note: Dots represent the point estimate. Vertical lines are the 95% confidence intervals. Clustered standard errors at the district level were used to construct the 
confidence intervals.
households face greater constraints in owning appliances under low 
reliability, while high-income households adapt by reducing ownership 
of costly, power-dependent appliances.

3.2.2. Other factors affecting appliance ownership
This section provides descriptive evidence of other drivers of appli-

ance ownership. Note that these results are not casual and should be 
interpreted with care. Appendix B presents the regression tables. We 
summarized the results for appliance ownership of key appliances in 
Fig.  11.
11 
Fig.  11 shows a substantial positive correlation between household 
financial factors and appliance ownership, excluding laundry machines, 
which may be due to high costs or cultural factors. As shown in the 
regression tables presented in Appendix B, households experiencing 
high job turnover tend to own fewer appliances, underscoring the 
role of financial stability in appliance ownership. This suggests that 
subsidy programs targeting appliances could be effective in increasing 
ownership, especially where financial uncertainty limits access.

Demographic characteristics of the households and education level 
also show a significant relationship with the dependent variables. 
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Fig. 11. Other drivers of appliance ownership.
Note: Dots represent the point estimate. Vertical lines are the 95% confidence intervals. Clustered standard errors at the district level were used to construct the 
confidence intervals. Regression tables are presented in Appendix B.
Historical gender roles, where women traditionally take on caretaking 
responsibilities in Rwandan homes (Izabiliza, 2003), could explain 
why households with more females tend to invest in more appliances, 
possibly for home-based productivity. Homes with many children show 
a lower probability of owning a variety of appliances, likely due to 
prioritizing spending on children’s needs. The head of household’s 
age and gender are also relevant. Female-led households and those 
headed by individuals under 35 are associated with lower appliance 
ownership, reflecting socioeconomic challenges such as lower incomes 
or financial stability. However, female-led households tend to pri-
oritize convenience appliances like cookers, which may align with 
traditional household roles in Rwandan society. Education levels of 
household heads are linked to greater appliance ownership, especially 
in categories like entertainment, productivity, and convenience. Higher 
12 
education levels likely enhance both the awareness of and ability to use 
these appliances effectively.

Finally, dwelling characteristics, such as the number of rooms in a 
house, exhibit a positive and significant relationship with the depen-
dent variable. Larger houses are associated with a higher likelihood 
of owning appliances, particularly items such as televisions, suggesting 
that the spatial requirements of a household influence the demand for 
appliances. Additionally, homeowners also have a positive and signifi-
cant relationship with the ownership of entertainment appliances. The 
stability brought about by long-term home ownership may encourage 
households to acquire more appliances over time. In contrast, rural 
households and multiple families sharing a home are less likely to have 
an extensive collection of appliances.
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4. Linking appliance ownership to usage and electricity consump-
tion

We further analyze how residential electricity consumption corre-
lates with appliance ownership. Our findings indicate that low reli-
ability impacts the mix of appliances that households own, suggest-
ing that investments to improve reliability may influence residential 
electricity demand in Rwanda. By estimating appliance-specific elec-
tricity consumption, we assess the broader implications of reliability 
on household electricity use. Following the conditional demand model 
by (Larsen and Nesbakken, 2004) and (Matsumoto, 2016a), we assess 
the role of both appliance ownership and usage in driving electricity 
consumption, acknowledging that reliability may affect both factors.

4.1. The conditional demand model

Household electricity use depends on appliance ownership and us-
age patterns, so simply regressing electricity consumption on ownership 
would lead to biased results. Several factors influence appliance use, 
including household and service characteristics (Blimpo and Cosgrove-
Davies, 2019; Matsumoto, 2016b), which complicate estimation due 
to simultaneity between consumption decisions and ownership (Dubin 
and McFadden, 1984). Addressing this simultaneity problem requires 
identifying instrumental variables that influence the purchase decision 
but not the usage decision. However, finding a valid instrument for 
each appliance is impractical given the diversity of appliances. The 
conditional demand model addresses this challenge by estimating aver-
age appliance-specific consumption while accounting for appliance use 
patterns.

Assume a household can own 𝓁 ∈ 𝐿 different types of appliances. 
We follow the hurdle model explained in our empirical section, in 
which a household first invests in each appliance and then decides 
the amount of units. Let 𝐷𝓁

𝑖  be a dummy that takes the value 1 if a 
household 𝑖 owns appliance 𝓁, and let 𝐾𝓁 > 0 be the number of units 
of that appliance owned by the household. We assign each household 
owning 𝐾𝓁 > 0 units of appliances 𝓁 to group 𝐾𝓁 and we estimate the 
intensity of the use of appliance 𝓁 within group 𝐾𝓁 . For this, assume 
that electricity consumption for the 𝑘th appliance 𝓁 for household 𝑖 is 
observed through direct metering. The appliance-usage equation is then

𝑦𝓁𝑖𝑘 = 𝛼𝓁 +
𝑀
∑

𝑚=1
𝛾𝓁,𝑚(𝐶𝑖,𝑚 − 𝐶̄𝐾𝓁 ,𝑚) + 𝜀𝓁𝑖𝑘 (4)

where the parameter 𝛼𝓁 measures the electricity required for an ap-
pliance of type 𝓁 for the mean household, and 𝜀𝓁𝑖𝑘 is an independent 
and identically distributed error term. The parameter 𝛾𝓁,𝑚 measures the 
effect of the 𝑚th observable characteristic 𝐶𝑖,𝑚 on the use of appliance 
𝓁. This variable can be the household socioeconomic characteristics as 
well as other factors. In this model, 𝐶̄𝐾𝓁 ,𝑚 is the mean characteristic for 
households in group 𝐾𝓁 . Therefore, the second term is the adjustment 
to appliance consumption due to usage on account of other variables. 
This equation enables us to investigate, for instance, whether high-
income households utilize each appliance 𝓁 more intensively than their 
low-income counterparts and whether households in areas with low 
reliability use certain appliances less intensively than those in areas 
with good reliability.

Given that each household owns 𝐾𝓁
𝑖  units of the appliance, we 

assume each unit has the same energy requirements, and the effect 
of household characteristics on appliance usage is the same for all 𝐾𝓁

𝑖
units. Therefore, the total electricity consumption of appliance 𝓁 is 

𝑦𝓁𝑖 = 𝑦𝓁𝑖𝑘 ⋅𝐾
𝓁
𝑖 = 𝛼𝓁 ⋅𝐾𝓁

𝑖 +
𝑀
∑

𝑚=1
𝛾𝓁,𝑚(𝐶𝑖,𝑚 − 𝐶̄𝐾𝓁 ,𝑚) ⋅𝐾

𝓁
𝑖 + 𝜔𝓁

𝑖 (5)

where 𝜔𝓁
𝑖 = 𝐾𝓁

𝑖 ⋅ 𝜀𝓁𝑖𝑘. Given that there are 𝐿 varieties of appliances, the 
total electricity consumption of household 𝑖 becomes 

𝑦𝑖 =
𝐿
∑

𝑦𝓁𝑖 ⋅𝐷
𝓁
𝑖 =

𝐿
∑

𝛼𝓁 ⋅(𝐾𝓁
𝑖 ⋅𝐷

𝓁
𝑖 )+

𝐿
∑

𝑀
∑

𝛾𝓁,𝑚(𝐶𝑖,𝑚−𝐶̄𝐾𝓁 ,𝑚)⋅(𝐾
𝓁
𝑖 ⋅𝐷

𝓁
𝑖 )+𝜇𝑖
𝓁=1 𝓁=1 𝓁=1 𝑚=1

13 
(6)

where 𝜇𝑖 = 𝜏 + 𝜔𝓁
𝑖 ⋅ 𝐷𝓁

𝑖 , and 𝜏 is the consumption due to unobserved 
appliances. Since all the variables in Eq.  (6) are observed, we can 
estimate it by least squares.

In this model, the parameters of interest are 𝛼𝓁 and 𝛾𝓁,𝑚. The 
parameter 𝛼𝓁 represents the electricity consumption associated to one 
unit of appliance 𝓁 for the mean household. That is, this variable 
measures how much electricity of a unit of appliance 𝓁 is expected 
to consume at the mean household. On the other hand, the parameter 
𝛾𝓁,𝑚 are the deviations in consumption from the mean due to usage 
differences across households. In other words, this method allows us 
to explain the intensity of appliance usage in terms of variations in 
the different household-level characteristics, for example, income and 
reliability. Hence, we can also estimate how appliance use is expected 
to change due to reliability changes.

To estimate the conditional demand model, we use the EICV data 
described in Section 3. However, this data presents some challenges 
for studying electricity consumption. First, it does not directly provide 
household electricity consumption in kilowatt-hours (kWh) but instead 
reports monthly electricity expenditure. We converted these expen-
diture values into consumption quantities for each household using 
the national tariff, as detailed in Appendix A. Nonetheless, the data 
is susceptible to misreporting and measurement errors, which could 
impact inference and introduce potential bias (Bruckmeier et al., 2019; 
Meyer et al., 2018).

4.1.1. Empirical estimates
Table  7 presents the results of our residential electricity consump-

tion analysis. Models 1, 2, and 3 utilize EICV reported consump-
tion data. Model 1 includes only appliance ownership variables, while 
Models 2 and 3 incorporate additional usage drivers. Model 3 is our 
preferred model. Robust standard errors are shown in parentheses.

In Model 3, we observe positive coefficients for appliance owner-
ship, except for sewing machines and cameras.23 The results highlight 
significant electricity consumption for certain appliances, notably hot-
plates, fridges, and laundry machines. Specifically, our findings suggest 
that, on average, households consume 15.6 kWh per month on hot-
plates, 19.58 kWh on fridges, and 36.6 kWh on laundry machines. 
Additionally, our estimates indicate that households consume an av-
erage of 5.2 kWh per month from television use. Smartphone use is 
associated with higher electricity consumption compared to feature 
phones, with households averaging 2.1 kWh per month for smartphones 
and 0.6 kWh for feature phones. This suggests that smartphones require 
more frequent charging due to their higher energy demands. Consump-
tion from other appliances is not statistically significant, indicating 
limited usage by households.

Models 2 and 3 in Table  7 emphasize the importance of usage 
variations among households in determining electricity consumption. 
The higher adjusted R2 values in these models, compared to Model 
1, indicate that controlling for appliance usage improves the model’s 
explanatory power. Due to space constraints, we focus on two key 
variables: household expenditure and electricity reliability. Addition-
ally, we include demographic variables for appliances whose usage is 
hypothesized to increase with larger household sizes.

The findings suggest a negligible impact of reliability on appliance 
use; Model 3 indicates that monthly electricity consumption for feature 
and smartphones decreases by 0.003 kWh and 0.004 kWh, respectively, 
with each additional outage.

While the effect of reliability on appliance use is minimal, Model 3 
in Table  7 reveals that higher-income households use televisions and 
phones more intensively. This could be due to two factors: higher-

23 However, model 1, which does not account for the intensity of usage, 
shows negative coefficients for water filters and radios.
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Table 7
Electricity consumption analysis.
 Reported Consumption (kWh/month)
 Model 1 Model 2 Model 3
 Communication
  Radio −0.179 (0.466) 0.257 (0.413) 0.130 (0.395)  
  Feature phones 1.655∗∗∗ (0.374) 0.637∗∗ (0.271) 0.595∗∗ (0.256)  
  # Outage freq. (number/day) −0.003∗∗ (0.001) −0.003∗∗ (0.001)  
  # Expenses (log RWF) 0.620 (0.435) 0.792∗(0.437)  
  # Children (number) −0.186 (0.138)  
  Smart phones 2.60∗∗∗ (0.456) 1.897∗∗∗ (0.407) 2.148∗∗∗ (0.383)  
  # Outage freq. (number/day) −0.003∗ (0.002) −0.004∗∗∗ (0.002)  
  # Expenditure (log RWF) 1.400∗∗∗ (0.422) 1.390∗∗∗ (0.448)  
  # Children (number) 0.178 (0.189)  
 Entertainment
  TV 6.172∗∗∗ (0.665) 5.460∗∗∗ (0.838) 5.209∗∗∗ (0.829)  
  # Outage freq. (number/day) 0.003 (0.004) 0.002 (0.003)  
  # Expenditure (log RWF) 2.460∗∗ (1.004) 2.144∗∗ (0.985)  
  # Children (number) −0.328 (0.348)  
  # Seniors (number) 4.005∗∗∗ (1.501)  
  Music system 0.633 (2.591) 0.964 (2.092) 1.022 (2.019)  
  Camera 1.098 (4.007) −1.150 (3.609) −0.965 (3.618)  
 Productivity
  Computer 4.827∗∗∗ (1.528) 2.445 (1.534) 2.151 (1.417)  
  # Outage freq. (number/day) 0.014∗ (0.007)  
  # Expenditure (log RWF) 1.022 (1.619) 2.069 (1.772)  
  # Members (number) −0.607 (0.760)  
  # Children (number) 0.676 (1.329)  
  Sewing Machine −0.451 (0.568) −0.472 (0.520) −0.589 (0.544)  
 Convenience
  Hotplate 24.894∗∗∗ (7.181) 16.444∗∗∗ (6.280) 15.601∗∗ (6.248)  
  # Outage freq. (number/day) −0.023 (0.097) −0.017 (0.092)  
  # Expenditure (log RWF) 28.147∗∗ (11.555) 29.402∗∗ (12.593)  
  # Members (number) −2.243 (3.425)  
  # Females (number) 0.438 (5.911)  
  Cooker 3.510∗ (2.039) 1.945 (1.721) 2.023 (1.822)  
  Fridge 20.419∗∗∗ (3.186) 19.582∗∗∗ (3.213) 19.585∗∗∗ (3.180)  
  # Outage freq. (number/day) 0.057 (0.039) 0.047 (0.035)  
  # Expenditure (log RWF) 10.658∗∗∗ (2.716) 11.079∗∗∗ (2.607)  
  Laundry machine 57.440∗∗∗ (20.267) 38.404∗∗ (15.563) 36.675∗∗ (15.781)  
  # Outage freq. (number/day) −0.202 (0.411) −0.221 (0.411)  
  # Expenditure (log RWF) 43.679∗ (23.832) 43.082∗ (24.529)  
  Water Filter −0.379 (3.000) 0.588 (2.536) 0.774 (2.582)  
 Number of rooms (lights) 0.568∗∗ (0.232) 0.669∗∗∗ (0.200) 0.713∗∗∗ (0.241)  
 Constant 3.536∗∗∗ (0.812) 4.628∗∗∗ (0.623) 4.363∗∗∗ (0.776)  
 Observations 2706 2706 2706  
 R2 0.523 0.603 0.610  
 Adjusted R2 0.520 0.599 0.605  
 F Statistic 226.074∗∗∗ (df = 14; 2891) 161.962∗∗∗ (df = 27; 2878) 124.684∗∗∗ (df = 36; 2869) 
Note: White’s robust standard error in parenthesis. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
income households may afford more electricity at a given tariff, or 
they may allocate their time differently compared to lower-income 
households. The income effect is more pronounced for smartphones 
than for feature phones, as smartphones have higher electricity needs 
and are more sensitive to income increases.

The impact of income is also significant for convenience appliances. 
Model 3 shows that a typical household consumes 15.601 kWh per 
month from hotplates, with consumption increasing by 29.40 kWh 
for each additional unit of log expenditure. Higher income is also 
associated with increased electricity use for fridges and washing ma-
chines, likely because lower-income households may face constraints in 
affording the electricity required to operate these appliances regularly.

4.2. Consumption and reliability

In this section, we examine the effects of grid reliability on house-
hold appliance ownership and its subsequent impact on electricity 
consumption.
14 
4.2.1. Aggregate appliance consumption across all households
This section describes the calculation of aggregate appliance con-

sumption for all grid-connected households in the survey. Using re-
gression estimates from Table  7, we analyze total household electricity 
consumption by examining both appliance ownership rates and average 
monthly consumption estimates. For each household 𝑖 with appliance 
type 𝓁, expected electricity consumption is modeled using Eq.  (7), 
which provides a framework to estimate monthly consumption based 
on the presence of various appliances. 

𝐸
[

𝑦𝓁𝑖 |𝐾
𝓁
𝑖 , 𝐶𝑖,𝑚

]

=

⎧

⎪

⎨

⎪

⎩

0 if 𝐾𝓁
𝑖 = 0

𝐾𝓁
𝑖

(

𝛼̂𝓁 +
𝑀
∑

𝑚=1
𝛾̂𝓁,𝑚(𝐶𝑖,𝑚 − 𝐶̄𝐾𝓁 ,𝑚)

)

if 𝐾𝓁
𝑖 > 0

(7)

Using this model, we compute the monthly aggregate consumption 
for each appliance type, focusing on commonly owned items like smart-
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Fig. 12. Aggregate household consumption.
Note: This figure illustrates the proportional contribution of each appliance 
type to aggregate household electricity consumption across all grid-connected 
surveyed households.

phones, televisions, lights, feature phones, fridges, and hotplates24. 
This aggregation relies on the expected monthly appliance demand 
combined with ownership rates across households in the survey. The 
results, shown in Fig.  12, reveal that widely owned appliances, specifi-
cally lighting, smartphones, and televisions, constitute the largest share 
of the aggregate consumption of household electricity. In contrast, 
high-energy appliances such as fridges and hotplates contribute less to 
total consumption due to lower ownership rates, particularly among 
lower-income households.

We further estimate monthly household-level consumption, where 
the most commonly owned appliances, phones and lights, result in 
relatively low consumption levels for many households. Our findings 
show that the median household consumes approximately 6.3 kWh per 
month (consumption 15.61 kWh for the average household). For com-
parison, data from the Rwanda Energy Group reports a higher median 
monthly consumption of 11 kWh in 2017 (Mugyenyi et al., 2025). This 
discrepancy suggests limitations in our dataset, which may lack a full 
inventory of household appliances (e.g. our model does not explain the 
full variation in the data). Common devices such as electric kettles, 
irons, and security lights are not captured in our survey, potentially 
leading to an underestimation of actual household consumption.

Overall, the analysis highlights how appliance ownership patterns 
drive aggregate consumption: more widely owned but lower-energy 
appliances contribute significantly to total consumption, whereas high-
energy appliances, despite their higher individual usage rates, have a 
limited impact on aggregate consumption due to their lower preva-
lence.

4.2.2. Quantifying reliability effects on appliance consumption
In the second part of the analysis, we combine the point estimates 

from Fig.  10 with Eq.  (7) to model changes in average household 
consumption under improved reliability scenarios.

We first modeled how appliance ownership would change in three 
scenarios: (1) improvement in the reliability of one unit for both low- 
and high-income households; (2) improvement of one unit for high-
income households; and (3) improvement of one unit for low-income 

24 The number of rooms is used as a proxy for estimating the number of 
lights in a household.
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households. For each scenario, we used the point estimate presented in 
Fig.  10 to estimate the number of households that would adopt new 
appliances for both the low- and high-income samples. This was done 
by calculating the share of new adopters based on the point estimates 
and the number of households in our sample.

Given that this analysis only determines the number of potential 
adopters, we performed 10,000 random draws from households that 
do not own the key appliances to determine the new adopters. In each 
simulation, a different pool of potential adopters is determined captur-
ing the fact that usage is different given households’ characteristics. In 
the last step of this simulation exercise, we use the simulated structure 
for appliance ownership, Eq.  (7), and estimates presented in Table  7, to 
predict the expected change in average monthly consumption relative 
to the baseline scenario presented in Fig.  12.

Results for this simulation exercise are presented in Fig.  13. In our 
analysis, uncertainty comes from the simulated ownership structure, 
but uncertainty with respect to the estimated coefficients used in the 
calculation are not accounted for.

4.2.3. Implications for resource allocation in grid reliability improvements
From the results in Fig.  13 we can observe that the expected change 

in consumption from reducing the daily frequency of outages for high-
income households leads to an expected change in average monthly 
consumption of 5%, but only of 0.3% in low-income households. This 
is primarily due to their higher ownership of energy-intensive appli-
ances like fridges. In contrast, lower-income households have fewer 
energy-intensive appliances, resulting in a smaller absolute reduction 
in consumption under unreliable grid conditions.

Given the disparity in the impact of reliability on consumption 
across income groups, we argue that limited financial resources for grid 
reliability improvements should be strategically allocated. Focusing on 
wealthier households may yield greater returns in terms of aggregate 
consumption gains, as these households are more likely to invest in and 
use energy-intensive appliances when grid reliability improves.

We further argue that a targeted investment approach must be 
complemented by initiatives that incentivize and subsidize electric-
ity consumption among lower-income households. Promoting greater 
adoption of energy-intensive appliances, such as those for clean cook-
ing, can enhance overall consumption, alleviate energy poverty, and 
advance equitable energy access. The observed disparities in consump-
tion highlight the importance of addressing the needs of both ends of 
the income spectrum to achieve a balanced and efficient outcome in 
Rwanda’s energy sector.

5. Discussion

This study contributes to the growing literature on how electricity 
reliability shapes appliance ownership and usage in low-income set-
tings. Our findings both complement and contrast with those of recent 
studies in Senegal and India (Cissé, 2025; Khanna and Rowe, 2024).

In Senegal, (Cissé, 2025) evaluates the effects of reliability improve-
ments using utility billing data and two waves of household surveys. 
The study finds that improved reliability increased appliance ownership 
by 9%, with effects becoming significant after two years, and raised 
electricity consumption by 2.6% per additional hour of supply. These 
gains were driven primarily by new acquisitions of fans, refrigerators, 
and laptops, with no significant differences in uptake by income group. 
Our results are broadly consistent in showing that reliability influences 
the types of appliances owned. However, we do not find a similar 
increase in overall appliance ownership, due to the dominance of 
phones and radios in our dataset, and we observe clear income-based 
heterogeneity in response to reliability, unlike in (Cissé, 2025).

Similarly, (Khanna and Rowe, 2024) analyzes outages in Delhi using 
household and utility data over five years. They find that an additional 
hour of outages per month reduces annual electricity consumption by 
4.8%. In contrast, both our results and those from (Cissé, 2025) suggest 
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Fig. 13. Consumption and reliability.
Note: Distribution represents the expected change in average consumption at the household level for each of the different scenarios and simulations. The dashed 
vertical line represents the expected change across the different simulations. Point estimates were used to conduct these estimates, and uncertainty from the 
estimated coefficients is not accounted for.
that in lower-income SSA contexts, consumption responses to reliability 
appear to be driven more by appliance acquisition decisions than by 
changes in usage of existing appliances.

Next, in interpreting income-related patterns in Rwanda, it is impor-
tant to note the country’s Ubudehe system.25 While household income 
is categorized through the Ubudehe system, the electricity lifeline tariff, 
offering discounted rates for consumption under 15 kWh per month, is 
applied uniformly, regardless of income group. As a result, we do not 
model subsidy effects by income in our analysis. The income-based het-
erogeneity we observe is therefore driven by underlying affordability 
constraints, rather than differential tariff design.

We find that while reliability does influence appliance owner-
ship, the effects are modest. Prior research shows that even among 
appliance-owning households in Rwanda, electricity consumption re-
mains low (Mugyenyi et al., 2025; Masselus et al., 2024). Subsidies 
for appliance ownership may offer some benefits, but broader im-
provements in household incomes and affordability are likely to be 
more effective in driving both appliance adoption and sustained usage. 
Strengthening household economic conditions is therefore critical to 
achieving meaningful and lasting welfare gains.

Several limitations of our study should be noted. First, appliance 
ownership and electricity consumption data are self-reported and may 
be subject to recall bias. Second, our analysis is based on a single 
survey wave, which prevents us from capturing dynamic responses 
to changes in reliability.26 Third, while we use lightning frequency 
as an instrumental variable to strengthen causal inference, potential 
threats to the exclusion restriction remain. For example, lightning may 
affect household income through its impact on local economic activity, 
and variation in grid protection infrastructure (e.g., presence of light-
ning arrestors) could alter the strength of the first-stage relationship 
across locations. Additionally, lightning detection data are subject to 
measurement error, with detection efficiency ranging from 69% to 
88% (GHRC, 2023), which may reduce the precision of our estimates. 
Finally, matching feeder-level outages to households using low-voltage 
line and GPS data introduces potential measurement error, since outage 
exposure may vary within a feeder’s service area. Nonetheless, we be-
lieve our outage data provide a credible proxy for the general reliability 
conditions experienced by households.

25 Ubudehe is Rwanda’s national system for categorizing households into 
income-based groups, used to target social programs and monitor poverty. It 
classifies households into four categories ranging from the poorest (Category 
1) to the wealthiest (Category 4).
26 We do not have access to electricity outage data prior to 2016.
16 
Future research could extend this study in several important direc-
tions. First, panel data linking household survey responses to changes in 
reliability over time would allow for a more precise analysis of dynamic 
household adjustments to service quality. Second, given the income-
related heterogeneity we observe, further work should explore how 
targeted interventions, such as appliance financing, income transfers, 
or subsidies, interact with reliability improvements to promote more 
equitable patterns of appliance adoption and energy use. Finally, the 
EICV 2016/2017 survey records only the primary electricity source re-
ported by households, without capturing secondary or complementary 
sources (e.g., solar kits used alongside grid electricity). Understanding 
how access to multiple electricity sources affects appliance ownership 
and usage represents an important avenue for future research.

6. Conclusion

This paper investigates the impact of electricity reliability on house-
holds appliance ownership and usage in Rwanda, focusing on the 
well-documented challenge of low appliance ownership and utilization 
in Sub-Saharan Africa. Utilizing rare access to administrative reliability 
data linked to household locations, the study provides a unique oppor-
tunity to examine how electricity reliability influences both the total 
number of appliances owned and the ownership of key appliances. We 
address empirical challenges related to endogeneity and measurement 
error using a novel set of instrumental variables;specifically, lightning 
frequency and radiance. These instruments help to mitigate biases, 
enabling a more accurate assessment of the relationship between elec-
tricity reliability and appliance ownership. Moreover, we estimate the 
conditional demand model to quantify how investments in improv-
ing reliability could impact residential electricity consumption. This 
analysis considers both the effects on appliance ownership and usage, 
providing insights into how enhanced reliability might influence overall 
residential electricity consumption.

The findings reveal a nuanced relationship between electricity reli-
ability, appliance ownership, and consumption. While reliability does 
not significantly affect the overall number of appliances owned, it does 
influence the types of appliances acquired. Higher outage frequencies 
are linked to lower ownership of entertainment devices, such as tele-
visions and decoders, especially among low-income households likely 
constrained by finances and limited usage flexibility. In contrast, high-
income households in low-reliability areas reduce ownership of energy 
intensive appliances, such as fridges and cookers, potentially substi-
tuting with alternatives due to the inconvenience of outages. Analysis 
of electricity consumption shows that widely owned, low-energy ap-
pliances, like lighting, smartphones, and televisions, account for a 
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substantial share of household electricity use, while high-energy appli-
ances contribute less overall due to low ownership among low-income 
households.

Improving grid reliability, particularly for higher-income house-
holds, could enhance appliance ownership and electricity consumption. 
However, reliability improvements alone will not ensure equitable 
access to electricity’s benefits or to the broader social welfare gains that 
modern appliances can deliver. Complementary policies that promote 
affordability and encourage appliance ownership among low-income 
households are critical to achieving inclusive energy outcomes.

By balancing efforts to improve grid reliability with strategies that 
address affordability and appliance access, policymakers in Rwanda 
and other Sub-Saharan African countries can foster a more inclusive 
and sustainable electricity sector, one that supports not only higher 
consumption but also broader welfare gains in health, education, and 
gender equity.
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