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In many parts of the tropics a prolonged dry season presents an economic
opportunity for farmers to grow a second crop beyond an otherwise single crop
that a shorter rainy season permits. These additional second crops can ensure
food security, improve nutrition and increase incomes. The first contribution of
this paper is to granularly identify regions of Sub-Saharan Africa where a
prolonged dry season exists. Energy planners are also keen to assess where
dry-season agriculture is being currently practiced and the extent of the area
cropped in the dry season. Assuming this is carried out using irrigation, this allows
planners to assess the scale of water and energy needs if these practices are to be
scaled. The phenological characterization of the landscape using vegetation
patterns helps to identify regions where dry season irrigation is feasible. This
study operationalizes an irrigation detection methodology originally applied to
the Ethiopian highlands built using visually collected labels from high resolution
imagery and limited ground truth data. The second contribution of the paper lies
in the application of the methodology over a range of African geographies, with
the exclusive use of visually collected labels. The methodology relies on the
distinct phenology of irrigated crops in the dry season that differentiates them
from rain-fed agriculture and evergreen vegetation. The method is applied across
different countries in sub-Saharan Africa to detect smallholder plots that are as
small as a tenth of a hectare. The method is found to be viable in semi-arid areas
with a prolonged dry season such as Northern Nigeria and Burkina Faso. We
demonstrate how humid regions such as those in Uganda with longer duration
rainfall are not well suited for the methodology. This is because the short dry
season does not allow sufficient time for non-irrigated vegetation to senesce
making it difficult to distinguish dry-season irrigation.

irrigation, smallholder, phenology, google earth engine, sub-Saharan Africa (SSA)

1 Introduction

Irrigation provides opportunities to increase incomes by producing an extra crop,
beyond a primary rainfed crop in many parts of the tropics. While a second (even a third)
crop through irrigation is widely practiced in high population density rural South Asia, its
prevalence is low in Sub-Saharan Africa. For the region, Food and Agriculture Organization
(FAO) and International Water Management Institute (IWMI) reports approximately 6%—
7% of arable land under irrigation (Siebert et al., 2013). FAO 2019 attributes these low levels
to both limited infrastructure and inadequate farmer investment-leading to high cost of
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implementing irrigation systems (FAO, 2019). The unpredictability
of weather affecting crop water requirements can lower yields
(Muzammal et al., 2024) and put food security at risk. Therefore
irrigation is vital to supplement rain-fed crops and also facilitate dry
season agriculture (Angelakis et al., 2020).

Irrigation alone however is not the only constraint to increasing
cropping intensity, and complementary factors such as markets,
inputs, credit, transport can be equally important (Bjornlund et al.,
2022). Identifying existing irrigation can provide a strong signal that
some of these conditions are already met and that provision of water
and mechanization could help scale the existing farmer-led
initiatives. If such initiatives are known across a landscape, it
makes provision of infrastructure and ancillary agronomy
support easier. Moreover the energy required to pump water for
agriculture can be a flexible component of electric demand that
provides load shifting capabilities for system benefits (Kocaman
et al, 2020). Smallholder farming and low levels of irrigation
difficult and
governments to carry out a full census of the farmer-led initiatives.

adoption however makes it expensive for

While remote sensing is not a substitute for ground surveys, it
can help identify and target regions where surveys would pay off and
at a minimum pre-identify areas of interest for supplemental data
collection. Ozdogan et al. (2010) have provided a review of spatial,
spectral and temporal information methods and the challenges with
transferability of methods to other locations, particularly for
with
(Ozdogan et al, 2010). Two primary methods of detecting

fragmented landscapes smallholder farmer irrigation
irrigation on local and global scale are through interpretation
and classification. Interpretation relies on the strong spectral
separation of irrigated fields from harvested and fallow fields
usually in semi-arid regions often utilizing field shapes as
additional features for identification (e.g., center pivot irrigation
schemes). Classification methods often rely on temporal composites
(Rufin et al, 2019) and often utilize random forests for
computationally efficient and accurate classifications (Azzari and
Lobell, 2017). Other techniques employ multi-stage classification on
a set of rules, density slicing with thresholds, decision trees
classification and neural networks for segmentation and
classification.

Thresholds on vegetation indices are often used in literature to
identify vegetated and non-vegetated croplands. Training labels are
collected using Sentinel 2 and Landsat time series and visual
interpretation of high resolution imagery, an approach replicated
in our study. One such effort utilizes dry season (May-Aug) Landsat
and Sentinel imagery in Mpumalanga Province of South Africa. The
authors collected training samples using high resolution images
VHRI to train a random forest classifier and map irrigated areas with
a classification accuracy of 88% (Magidi et al, 2021). Another
approach utilizes Sentinel 2 imagery in the horn of Africa
(Ethiopia, Sudan and Kenya) to identify irrigated agriculture
(Vogels et al, 2019). The methodology focuses on an object-
based approach and monitoring surrounding vegetation due to
rainfall. In the dry season where there is no rainfall, irrigated
croplands are easier to detect. In the wet season, the
methodology utilizes multiple thresholds on NDVI of 15%-35%
which vary from region to region to distinguish rainfed agriculture
from irrigated agriculture. This however results in higher estimates

of irrigated agriculture.
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FIGURE 1
Flowchart of the irrigation detection methodology.

Conlon et al. (2022) utilizes multiscale imagery to map
phenology at national scale using Enhanced Vegetation Index
(EVI)
Spectroradiometer (MODIS) 250 m imagery that guides the

composites  from  Moderate Resolution Imaging
classification of potential smallholder irrigation using EVI
temporal composites from Sentinel 2 10 m imagery. This resulted
in dry season irrigation classifications of high accuracies (greater
than 95%) over the Ethiopian highlands using gradient boosted
decision trees and transformer based neural networks (Conlo et al.,
2022). A simplified version of the methodology implemented using
Google Earth Engine’s built-in classifiers was used for a rapid
analysis of changes in irrigated agriculture across 5 years from
2019 to 2023 for Southern Tigray (Siddiqui and Modi, 2024).

This study provides practical operational guidance to implement
dry season smallholder irrigation detection and presents a
comparative analysis of its applicability over a range of
geographies in sub-Saharan Africa to illustrate both the strengths
and limitations of remote sensing-based detection of smallholder
irrigation. Results from Northern Nigeria, Burkina Faso and Uganda
serve to demonstrate the scope of the classifier trained using
this approach.

2 Materials and methods

Irrigated lands are cultivated areas that receive either partial
application of water through artificial means to supplement rain-fed
irrigation or full application to meet the complete water
requirements for crop growth during the dry season. The
classification presented in this study deals with the latter where
the primary objective is detection of dry season irrigation. Large
scale irrigation schemes are easier to detect due to the scale of the
plots and their strong spectral signature versus non-irrigated fields.
Smallholder irrigation on the other hand is practiced on small
agricultural plots of the order of tenth of a hectare (1000 m*) or
less and are often more difficult to detect due to the plot size. These
systems are usually informal irrigation schemes developed without
planning and with little or no technical assistance. The majority of
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FIGURE 2

[llustration of vegetation patterns across Africa in 2021 based on MODIS EVI. Certain sub-Sahran geographies are characterized by a prolonged dry
season while other regions experience longer rainfall periods as evident by prevalent vegetation across the year

these systems are located in close proximity to surface water or
groundwater. MODIS 250 m imagery cannot detect smallholder
irrigation due to the coarser resolution of the pixel (6.25 ha). This
study relies on the 10 m Sentinel 2 imagery such that multiple pixels
overlap field boundaries. This avoids mixed pixels due to
misalignment and improves confidence in the predictions.

The methodology utilized is based on the one developed by
Conlon et al. (2022) and is summarized in the flowchart in Figure 1.
The workflow utilizes Google Earth Engine (GEE) to access hosted
satellite imagery products and perform classifications. GEE allows
integration with Google Cloud Platform to scale up storage and
computational resources and build machine learning workflows
(Cardille et al., 2024).

2.1 Phenological characterization

The identification of dry season irrigation stems from the
analysis of seasonal vegetation patterns. These patterns occurs in
sync with rainfall seasons that are driven by the movement of the
Intertropical Convergence Zone (ITCZ). The ITCZ is formed at the
thermal equator where the rising air from heat causes a system of
low pressure. This facilitates the formation of clouds producing
rainfall. The thermal equator is a region that receives intense heat
from the sun and migrates latitudinally across the Sahel as the earth
orbits the sun. This causes shorter wet seasons in the northern parts
of the Sahel and no pronounced dry season closer to the equator.
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This movement of rainfall patterns causes vegetation growth and
senescence. Figure 2 presents an illustration of these vegetation
patterns in Africa using EVI from MODIS imagery across the
calendar year.

A phenological characterization of these vegetation patterns can
be done by identifying the dominant vegetation cycles called
temporal end members (tEMs). Mixture modeling of the
temporal end members derived from distinct MODIS 250 m
Enhanced Vegetation Index (EVI) time series characterizes native
vegetation phenologies at regional scale to provide the basis for a
continuous phenology map. Thus each pixel’s EVI time series Py
(contained in the time space cube with x pixels and t timesteps) can
be represented by a linear mixture model (Small, 2012).

Ptx = ictiFix + &ix

i=1

n

s.t. Fix >0,i = 1,..,n (non-negativity constraint) and ZFf" (sum to
one constraint) i=1

where:

Cy; are the temporal endmembers.

Fix are the weights/fractions of each tEM with some residual
error €.

The spatial fractions Fi; can then be mapped to study the
while the

endmembers represent the phenological cycle associated with

vegetation phenologies corresponding temporal

each fraction map. Sousa and Small (2022) used the temporal
mixture modeling methodology described above to produce a
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FIGURE 3

Phenology map of the Sahel created using 18 years of MODIS 500 m imagery at 16 days timesteps by Sousa and Small (2022) and visualized in QGIS.
4 tEMs corresponding to single cropping cycles (red), dual cropping cycles (blue), evergreen (green) and barren/non-vegetated (black) are used for

unmixing are plotted.

phenology map for the Sahel shown in Figure 3 using MODIS EVI
time series (Sousa and Small, 2022). The map is created using four
tEMs. Regions dominated by single cropping cycle per year peaking
in September are shown in red whereas regions with two cropping
cycles per year peaking in May and November are shown in blue.
Similarly, regions with prevalent evergreen vegetation are
represented with green and barren areas are shown in black. This
resembles the agroecological map of Africa (Wilkus et al., 2019) and

forms a basis to characterize the African landscape.

2.2 Selection of study regions

This phenological characterization is crucial to distinguish our
definition of dry season irrigation phenology (an EVI peak is
observed in the dry season) from regions with dual cropping cycles.
Due to this potential similarity in phenologies, the performance of a
classifier trained to detect a dry season peak deteriorates when it is
applied to regions with a dual cropping cycle. Therefore, the application
of the methodology is restricted to regions with a single cropping cycle
(shown in red in Figure 3). Another key challenge emerges when
looking at single cropping cycles across different countries in the
phenology map of the Sahel. While the northern part of Uganda
also has a single cropping cycle, it experiences longer rainfall periods
and a shorter dry season. This prompts the need for regional phenology
maps to understand if the methodology is applicable across all regions
with single cropping cycles.

We hypothesize that the methodology is applicable in semi-arid
regions with a prolonged dry season and not applicable in humid

Frontiers in Remote Sensing

regions. To test this hypothesis, we selected study regions consisting
of Northern Nigeria, Burkina Faso and Uganda. The northern part
of Nigeria which consist of roughly two-fifths of the total area of the
country and almost all of Burkina Faso are dominated by a single
cropping cycle similar to the Ethiopian Highlands as evident in
Figure 3. Uganda experiences longer rainfall periods and is thus
more humid. Temporal end members were extracted for each study
region to create phenology maps shown in Figure 4. Note that while
the use of colors to denote regions with single and dual cropping
cycles as well as non-vegetated and evergreen vegetation remains
consistent with the phenology map of the Sahel (Figure 3), the
vegetation cycle differs across regions. For example, the length of the
dry season in regions shown in red in semi-arid areas (Nigeria and
Burkina Faso) is 6 months compared to humid areas (Uganda) with
a shorter dry season of 3 months. The next step involves collecting
labels over our study regions.

2.3 Label collection

An app built using Google Earth Engine was used to
interactively examine the mean Sentinel 2 EVI time series for
each polygon drawn over areas of interest through visual
inspection of dry season composite and submeter resolution
Google Earth imagery. These polygons are either discarded or
saved as irrigated/non-irrigated depending on if an EVI peak is
observed in the dry season. The dry season for Northern Nigeria
based on Figure 4 is taken to be from January 1** to August 1* and for
Burkina Faso from November 1% to May 1*. These dates also are

04 frontiersin.org
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Phenology maps for Nigeria, Burkina Faso and Uganda created using MODIS 250 m imagery are shown with corresponding tEMs in subplots used for
mixture modeling. Regions with single cropping cycles per year, dual cropping cycles per year and evergreen regions are shown in red, blue and green

channels respectively.

used to create a false color composite of dry season Sentinel
2 imagery with SWIR, NIR and visible blue bands used in the
RGB channels. Short wave infrared produces a better contrast
between substrate and vegetation compared to the red band.
Figure 5 illustrates the process of label collection for a location in
Burkina Faso Northeast of Zémpana by the Sourou River. The EVI
timeseries for AOIs drawn are shown on the bottom right window
for a sample irrigated plot in blue, non-irrigated in red and evergreen
in yellow. An EVI peak is evident for the irrigated plot in the dry
season window highlighted in green.

Frontiers in Remote Sensing 05

For the purpose of labeling, each region of interest was split into
10 x 10 km grids. 10% of these are randomly selected to use for
labeling. However, this approach of obtaining balanced sampling is
not efficient as most of the tiles would not conform to regions
containing agriculture. Therefore, a better approach would have
been to filter tiles using cropland maps or high-resolution settlement
layers. This was not done due to concerns of spatial inconsistency
across different study regions among available cropland products
(Wei et al, 2020). The labeling effort was also biased towards
locating irrigated polygons to ensure a balanced dataset of

frontiersin.org
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Illustration of visual label collection process in Burkina Faso using an app developed in GEE. An example of irrigated label 0, non-irrigated label 1 and
evergreen label 2 (discarded) with the EVI timeseries in blue, red and yellow are shown. A green window highlights the dry season where an EVI peak is

observed for irrigated plot.

irrigated and non-irrigated labels as there are significantly more
non-irrigated fields versus irrigated fields. This resulted in
197 irrigated and 143 non-irrigated polygons in Nigeria and
129 irrigated and 135 non-irrigated labels in Burkina Faso.
Labeling was unfruitful in Uganda due to shorter dry season
(insufficient for background vegetation to senesce) and cloud
cover issues from longer rainfall periods (A detailed document
for labeling used by enumerators is available on Github).

2.4 Cluster cleaning

The labelled polygons were then exported as geojson files and
used to generate corresponding temporal stacks of EVI at 10-day
timesteps. Since each polygon may cover multiple fields, using the
mean of the EVI timeseries of all pixels would mean fields having
different crops, planting and harvesting cycles, irrigation techniques
and weeds/non-weeds etc., would not be captured. To mitigate this,
we use the EVI timeseries of each pixel inside the labelled polygons.
These timeseries undergo temporal interpolation and smoothing
based on Savitzky Golay filter (order = 3, window size = 60 days) to
fill in missing data points and smooth abrupt changes in EVI due to
cloud cover, sensor error and other effects. The polygons from both
classes are split into training (70%), validation (15%) and testing
(15%) and the smoothed timeseries are saved as csvs. Hierarchical
Gaussian mixture model is then used for unsupervised clustering of
the time series. The clusters are used to examine the vegetation
phenologies and remove ones that do not fit in the description of
irrigated or non-irrigated. An example of this process for Burkina

Frontiers in Remote Sensing

Faso is shown in Figure 6. Table 1 summarizes the number of pixel
time series after cluster cleaning that are then saved as tfrecord files
(compressed format for TensorFlow). These are used to train
classifiers.

2.5 Admissibility criteria

For inference, a temporal stack of EVI at 10-day timesteps is
created for regions of interest. These undergo a temporal
interpolation smoothing step similar to the one described
above for labels. The EVI stack is subjected to rules/
admissibility criteria determined by the 90" and 10"
percentile of EVIL. To remove evergreen vegetation, a cutoff on
the 10" percentile of EVI time series that never drop below a
certain threshold is applied. Similarly ensuring the 90" percentile
of the EVI time series is greater than the threshold gets rid of
barren regions. The threshold was set at 20% of maximum EVI
values for Nigeria and Burkina Faso and determined using the
tEM plot from Figure 3 (EVI values for the barren tEM is 0.2 or
lower). Another condition that the ratio of 90" and 10%
percentile of EVI timeseries is greater than 2 gets rid of
further evergreen pixels. This criterion comes from analysis of
the phenology map of the Sahel where the EVI values of the
evergreen phenology vary from 0.5 to 0.65 giving a ratio of 1.3
(less than 2). Applying these admissibility criteria reduces the
amount of computation required for the classifier which then
predicts dry season irrigation and outputs a raster file with binary
classification of the predictions.

frontiersin.org


https://github.com/hssiddiqui/Irrigation-Detection-SSA/blob/main/Sahel_labeling_v4.pdf
mailto:Image of FRSEN_frsen-2025-1661528_wc_f5|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1661528

Siddiqui et al.

10.3389/frsen.2025.1661528

Total Irrig Pixels: 233951

Total lrrig Pixels: 204968

— Cluster 0, 12504 px.
— Cluster 1, 12620 px.
~— Cluster 2, 6856 px.
—— Cluster 3, 10483 px.
— Cluster 4, 18827 px.
—— Cluster 5, 11667 px.
—— Cluster 6, 9763 px.
— Cluster 7, 17153 px.
— Cluster 8, 12653 px.
—— Cluster9, 3528 px.

0.5 4 == Cluster 10, 10692 px.

== Cluster 11, 14535 px.

~- Cluster 12,1279 px.
== Cluster 13,9227 px.
-~ Cluster 14, 7259 px.

Cluster 15, 10317 px.

0.4 4 === Cluster 16, 14905 px.
-=- Cluster 17,5798 px.

— Cluster 0, 6407 px.
— Cluster 1, 18491 px.
—— Cluster 2, 8236 px.
—— Cluster 3, 12838 px.
—— Cluster 4, 18095 px.
0.6 { —— Cluster s, 6029 px.
— Cluster 6, 8715 px.
— Cluster 7, 14364 px.
— Cluster 8, 6747 px.
—— Cluster s, 7719 px.
0.5 | == Cluster 10,6767 px
--- Cluster 11, 13146 px.
-~ Cluster 12, 13748 px.
-~ Cluster 13, 8037 px.
-~ Cluster 14, 6491 px.
-~ Cluster 15, 10524 px. //
0.4 -~ cluster 16,9724 px.
~=- Cluster 17, 12634 px. ~

@ === Cluster 16, 17336 px. @ --- Cluster 18, 6257 px.
- Cluster19, 15549 px. -~ Cluster 19,9999 px.
03 !
03
02
02
01
014
s o o S s o S S s o S s
& N & R s & @ > R s
P ' & Ea < b W B of IS
Total Noirrig Pixels: 183184 Total Noirrig Pixels: 151361
— Cluster 0, 18699 px. 0.6 4 — Cluster 0, 5406 px.
0.7 1 — Cluster 1, 14755 px. —— Cluster 1, 16610 px. N
—— Cluster 2, 1385 px. Cluster 2, 10023 px. /
—— Cluster 3, 4294 px. o —— Cluster 3, 8623 px. / \
— Cluster 4, 6922 px. / — Cluster 4, 6607 px. / \
~ Cluster 5, 3064 px. 4 Cluster 5, 4813 px. / \
0.6 | — Cluster6, 7333 px. ! 055 — Clusters, 3207 px. |
~—— Cluster 7, 1903 px. s —— Cluster 7, 2390 px.

— Cluster s, 10945 px.
—— Cluster 9, 4995 px.
Cluster 10, 7253 px.
Cluster 11, 5727 px.
Cluster 12, 17903 px.
Cluster 13, 14968 px.
Cluster 14, 2442px. |/
Cluster 15, 9454 px.
Cluster 16, 3415 px. " /
-~ Cluster 17,17797 px. 74
== Cluster 18, 16073 px.
== Cluster 19, 13857 px.
\

— Cluster s, 4700 px.
—— Cluster 9, 21211 px.
== Cluster 10, 7737 px.
== Cluster 11, 11564 px.
-~ Cluster 12, 13954 px.
0.4~~~ Cluster 13,2294 px.
== Cluster 14, 3849 px.
~- Cluster 15, 2486 px.
== Cluster 16, 11762 px.
- == Cluster 17,1741 px.
@ = Cluster 18, 6518 px.
03 {l=== Gumer1s, 776

I\ \

03 \

024 et AN s
02
0.1 01
na > > > > > N N " N " N
o Ry S o s o o Ry o o A o
& o N el o o« o ¥ <R «©

FIGURE 6

Unsupervised clustering of EVI time series before and after cleaning for irrigated ((a,b) respectively) and non-irrigated pixels (c,d) for Burkina Faso.
The clusters that do not fit the definition of irrigated (e.g., cluster 14 in figure (a)) and non-irrigated (e.g., cluster O in figure (c)) are removed to prepare the
training dataset.

TABLE 1 Summary metrics of data used for training resulting from labeling and cluster cleaning.

Country Labelled Total labelled Pixels after cluster Training Validation Testing
polygons area (ha) cleaning pixels pixels pixels

Nigeria Irrigated 129 2210 204968 48778 9291 18818
Non- 135 1271 151361 40217 20100 29768
irrigated

Burkina Faso Irrigated 197 2992 132164 157404 27480 20084
Non- 143 971 130479 109972 24270 17119
irrigated

2.6 Training

Gradient boosted decision trees have continued to dominate as
algorithms of choice when it comes to remote sensing classification and
detection methodologies (Mooney and Culliton, 2023). However,
neural networks with suitable architectures to the task can improve
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the classification performance often at the expense of computation
resources. Conlon et al. (2022) compared random forest classifier,
gradient boosted decision trees, and 3 neural network architectures
(baseline, LSTM and transformer based networks). The transformer
model outperformed all other models followed closely by the catboost
model. This study uses the same transformer model architecture shown
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in Figure 7 to detect smallholder irrigation in Northern Nigeria and
Burkina Faso. The model consists of 50,010 trainable parameters, uses
an Adam Optimizer with a learning rate of 0.001 and a binary cross
entropy loss function. Class balancing weights that are inversely
proportional to their class frequency are used to address imbalances
in the number of irrigated and non-irrigated training samples. A batch
size of 64 with 30 epochs is used for training done on the Google Cloud
Platform using a VM instance comprising of nl-standard-8 (8 vCPUs,
30 GB Memory) and one NVIDIA Tesla P4 GPU.

2.7 Inference

The Food and Agriculture Organization of the United Nations
provides statistics for areas equipped for irrigation and maps with
irrigated areas as a fraction of the areas equipped for irrigation
(AQUAMAPS, 2013). The FAO-Aquastat statistics are based on
estimates, land cover maps, public irrigation schemes, fadama
schemes and river basin development authorities. A breakdown of
the methods utilized to determine irrigated area for each country is
reported (Siebert et al,, 2013). While these maps are dated and report
irrigation infrastructure, the hypothesis is that a comparison of the
predictions at state level as a fraction of total cropland area that is
irrigated can illustrate the agreement of the classifications with the
reported statistics.

3 Results

The classifier achieves an overall F1 score ( of more

Vs
TP703 (FPYFN))
than 96% on the withheld testing dataset across both countries.
Table 2 presents a breakdown of the training metrics including true
positives (TP) and negatives (TN) as well as false positives (FP) and

negatives (FN).
3.1 Northern Nigeria

Roughly two-fifths of Northern Nigeria has a prolonged dry season
where dry season irrigation is easy to detect and receives annual rainfall

Frontiers in Remote Sensing

TABLE 2 Transformer model training metrics for Nigeria and Burkina Faso
on the withheld testing dataset.

Country Nigeria Burkina Faso
F1 score 0.97 0.97

Irrigation Accuracy 0.98 0.94
Non-Irrigation Accuracy 0.97 0.99

TP 18399 18926

TN 28978 16944

Fp 761 171

FN 406 1154

below 700 mm. The Southern part of Nigeria experiences an average
annual rainfall of 2000 mm. The central region is characterized by two
rainfalls during the year and receives 1200 mm or less. Most of the
irrigation in Nigeria takes place in the Fadamas which are irrigated flood
plains across major river valleys, river Niger and river Benue (Eduvie
and Garba, 2021). Shallow aquifers are constantly recharged through
flash flooding and hold groundwater for dry season irrigation. The
majority of the fadamas lie in the Sokoto River basin with minor
famadas in sedimentary terrain in Kaduna, Karami, Galma, Kachia,
Tubo, Kuri, etc. (Xie et al,, 2017). Identifying these areas, presents an
opportunity for mechanization through introduction of irrigation
technologies and identifying productive uses of energy such agro-
processing and cold storage.

Figure 8 shows the irrigation predictions for Northern Nigeria.
Parts of Kano, Jigawa and Bauchi are zoomed in at the top. The
outlines of AQUASTAT tiles containing irrigation infrastructure are
shown in white to assess the spatial correlation with the predictions
in yellow. An example of smallholder dry season irrigation south of
Gusau is zoomed in at the bottom against high-resolution Google
Earth imagery of the region on the right. Two polygons are drawn to
verify the irrigated predictions in blue and non-irrigated in red. An
EVI peak is observed in the dry season for the irrigated field
highlighted by a green window.

A state by state comparison between the cropland area that is
predicted to be irrigated is plotted against the percentage of

frontiersin.org


mailto:Image of FRSEN_frsen-2025-1661528_wc_f7|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1661528

Siddiqui et al. 10.3389/frsen.2025.1661528

o 1% Y

b A,
e S

2021-Feb  2021-Apr  2021-Jun  2021-Aug  2021-Oct  2021-Dec
Date

FIGURE 8

Irrigation Predictions in Northern Nigeria for 2021. Areas predicted to have dry season irrigation appear as yellow on the map. Total land area that the
classifiers were used to predict over is roughly 400000 km?. Less than 1% of the total area is predicted to be irrigated. FAO AQUASTAT tiles in white are
used to assess spatial correlation with predictions in the zoomed in states at the top. An area near Gusau is zoomed in at the bottom to show predictions
against sub-meter resolution imagery and polygons drawn to verify the predictions

cropland area that is equipped for irrigation from AQUASTAT in  that equipped for irrigation. The outlier states suggest an
Figure 9. The area predicted to be irrigated agrees with the FAO  underutilization of irrigation potential because the area
statistics on areas equipped for irrigation except Zamfara, Yobe  predicted to be irrigated is less than the area equipped for
and Borno where the predicted area that is irrigated is less than  irrigation.
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FIGURE 9

Plot of percentage of cropland area predicted to be irrigated vs. percentage of cropland area equipped for irrigation from AQUASTAT by state. A 1:1

(y = x) line is plotted as a red dotted line

FIGURE 10

Irrigation Predictions in Burkina Faso for 2021. Areas predicted to have dry season irrigation appear as yellow on the map. Only 113 sgkm of irrigation
is found across the entire Burkina Faso. An irrigation scheme in Centre-Est region of Burkina Faso in 2021 is shown zoomed in

3.2 Burkina Faso

Burkina Faso which is landlocked by the Sahara Desert to the
North and the Gulf of Guinea to the South. Most of the country
experiences prolonged dry season which makes dry season
irrigation easier to detect. The rainy season lasts from May to

Frontiers in Remote Sensing

10

September and the dry season occurs in the winter from October
to April. The annual rainfall fluctuates between 500 mm in the
North to 900 mm and over in the South. Gravity fed irrigation is
practiced with water diverted from rivers using feeder canals
(Dembele et al., 2012). Figure 10 shows irrigation predictions for
Burkina Faso.
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Plot of percentage of cropland area predicted to be irrigated vs. percentage of cropland area equipped for irrigation from AQUASTAT by state. States
with no predicted irrigation have been omitted from the plot. A 1:1 (y = x) line is plotted as a red dotted line.

The percentage of cropland area that is predicted to be irrigated
is plotted against the percentage of cropland area that is equipped for
irrigation from AQUASTAT by State in Figure 11. A general
agreement is observed except for Hauts-Bassins where the
cropland area predicted to be irrigated is lower than the cropland
area equipped for irrigation.

3.3 Uganda

Uganda receives more rainfall throughout the year ranging from
700 mmm to 1500 mm leading to a shorter dry season than other
parts of the Sahel such as Ethiopia that have a prolonged dry season.
This is reflected in the phenology map of Uganda in Figure 4 where
the single cropping cycle represented in the red channel has a dry
season that lasts for 3 months from January to March. In
comparison, the prolonged dry seasons observed in Northern
Nigeria and Burkina Faso last for 6 months of the year. Fewer
cloud-free images are available due to longer rainfall periods
resulting in noisier EVI time series. The absence of a pronounced
dry season obstructs the identification of croplands that exhibit a
non-perennial vegetation cycle in the dry season since the
surrounding vegetation hasn’t had ample time to senesce.

Columbia World Projects carried out a survey including farmer
interviews in Uganda during the dry season months of early 2023
(Modi, 2025). Some of the smallholder farms had the smaller side
length of the plots less than the 10 m pixel resolution of Sentinel
2 making vegetation patterns harder to detect due to mixed pixels.
Several farmers tend to grow multiple crops within their agriculture
plot which is aimed at serving subsistence farming needs. Proper
irrigation knowledge and resources are either limited or absent
(Hortirrigation, 2025). The survey was aimed at interviewing
that biased dataset of
11,021 interviews of farmers that irrigate and 3,818 farmers that
don’t. The data revealed that 88% of the farmers in Uganda use

farmers irrigate resulting in a
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manual irrigation methods with handheld containers accounting for
85% of the water transportation to the fields. Identification of these
farmers is an opportunity for targeted investment in infrastructure,
introduction of irrigation technologies, and development of supply
chains and markets. EVI timeseries were extracted for each plot
coordinate obtained from the survey. This was used to assess
classifier performance trained on phenology as labelling efforts in
this region were unfruitful due to the challenges described earlier.
The transformer F1 scores on the withheld testing data deteriorated
to 62% over irrigated areas (TP: 777, TN: 630, FP: 412, FN: 540) as
opposed to 96% achieved in Nigeria and Burkina Faso.

Figure 12 shows a comparison of the mean, 25th and 75th
percentiles of Sentinel-2 EVI time series for different plots across the
Ethiopian Highlands from Conlon et al. (2022), Northern Nigeria,
Burkina Faso and surveyed sites in Uganda. The EVI timeseries for
Uganda were extracted for farmer plot locations from the interviews.
While the other regions exhibit a distinct peak in the dry season for
irrigated time series, no clear distinction is observed for the different
plots in Uganda among irrigated and non-irrigated EVI time series.

4 Discussion

Knowing the locations of the smallholder farmers that irrigate is
essential for energy access planning in order to size the grids to meet the
demand associated with irrigation and agro-processing and thus
understand the associated costs. Therefore from developer
perspective, the essential question is related to the probability that a
10 m x 10 m pixel which corresponds to 0.01 hectare area of land is
actually irrigated given that the classifier predicts it to be irrigated.

Given that we can obtain prior knowledge of irrigation through
FAO Aquastat, this can be worked out using the Bayes Theorem. In
Kano, 1.3% of the total area is equipped for irrigation. The
probability that a given pixel is irrigated is 0.013 and not

irrigated is 0.987. Table 2 provides the Transformer model
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Plots of mean, 25th and 75th percentiles of Sentinel-2 EVI time series for multiple plots across the Ethiopian Highlands, Northern Nigeria, Burkina

Faso and Uganda are shown.

performance metrics for Nigeria. The true positives is the probability
that the classifier gives a positive result (predicts irrigated) given that
the test label is irrigated which is 0.96. Similarly the true negatives is
the probability that the classifier gives a positive result (predicts
irrigated) given that the test label is irrigated which is 0.014.
Therefore the probability that a 10 m x 10 m pixel in Kano is
actually irrigated given that the model predicts it to be
irrigated is 0.48.

Having more than one irrigated pixel or clusters of smallholder
irrigation increases the probability that the pixels predicted to be
irrigated are actually irrigated. Therefore the results were then
aggregated to 250 m x 250 m which corresponds to 6.25 ha and
binned into categories of fraction of the 250 m x 250 m pixel that is
irrigated. This can be used as a prior to increase the probability of
targeting areas that are irrigated given that they are classified as
irrigated. The predictions are uploaded to CWP dashboard (can be
viewed under the “Map” tab by navigating to the “landscape
predictions and analysis” drop down menu and toggling the
“N.Nigeria: % area predicted irrigated (6.25ha)” layer). The
dashboard is a platform that hosts raster and vector layers
related to energy for productive use projects, a Columbia World
Projects initiative carried out by Quadracci Sustainable Engineering
Laboratory (Columbia, 2025).

5 Conclusion

Mapping irrigated areas has vital policy implications for
supporting economic growth through irrigation development. It
is also key to achieving the United Nation’s Sustainable
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Development Goals (SDGs) namely, alleviating food insecurity
(SDG 2), sustainable management of water resources (SDG 6)
and adapting agriculture to climate change (SDG 13). The energy
required for pumping water for irrigation and associated productive
uses of energy (PUEs) such as agro-processing provide flexible load
integration to household demand. This load shifting flexibility offers
system benefits for sustainable and economically viable energy
access solutions.

Dry Season photosynthetic growth can be identified using dry
season false color composites to get a stark contrast between
vegetation and substrate. The challenge then becomes to separate
the different classes such as evergreen vegetation like forests,
rainfed-crops, swamps, etc. from dry-season irrigated agriculture.
The temporal profile of vegetation indices such as EVI provides
information about crop growth, maturity and senescence. If these
occur during the dry season with no rainfall to meet crop water
requirements, it indicates the use of irrigation techniques. This is
however dependent on the climate and the landscape being
examined. In humid areas with longer rainfall periods, the
surrounding vegetation that relies on rainfall does not senesce
due to the absence of a pronounced dry season. Therefore, dry
season irrigation in these regions cannot be differentiated from rain-
fed agriculture and other prevalent vegetation types such as shrubs,
grasslands, etc. Thus a prolonged dry season (lasting for at least
6 months as shown in the examples in Figure 12) is paramount for
these classifiers to identify smallholder farms that irrigate during the
dry season.

The methodology developed to detect dry season irrigation in
the Ethiopian highlands was operationalized to detect smallholder
irrigation in Northern Nigeria and Burkina Faso to demonstrate the
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scope of the classifier. Other semi-arid regions with a similar
prolonged dry season where the methodology could be applicable
include countries such as Senegal, Mali, Ghana, etc. Even though the
comparative analysis was limited to the Sahel, the methodology is
likely applicable to countries south of the equator such as Malawi
which have a pronounced dry season. These conform with the semi-
arid regions in the agroecological map of Africa.

Humid areas such as Uganda with shorter dry seasons require a
different approach to identify smallholder irrigation. This may be
accomplished through a traditional machine learning approach
incorporating features such as topography maps, precipitation,
evapotranspiration, distance to surface water, distance to
infrastructure, etc. to understand where the farmers choose to
irrigate (Walsh et al., 2023).

Unmanned Aerial Vehicles have often been utilized to overcome
barriers of spatial resolution and provide sub-meter resolution imagery
(Nhamo et al, 2020) (Cucho-Padin et al, 2020). While these are
essential for crop classification, the characterization of irrigation is
reliant on temporal data to distinguish the vegetation cycle from non-

irrigated agriculture that might not be available through UAVs.
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